High School Science Physics

Grade 9

Curriculum Contributors:

Marc Aranguren Vincent Dionisio Stephen Gelb Jacqueline Tettey-Lokko

Superintendent of Schools Dr. Antoine Gayles

Director Dr. Christy Oliver- Hawley

Supervisor Lisa Corona, Science

Board of Education Approved: August 22, 2016

Table of Contents

Section	Page
Mission Statement	3
Academic Overview	3
Affirmative Action Compliance Statement	3
Honors	4
Science Department Lesson Plan Template	5
Units and Pacing Charts	
Unit 1:	7
Unit 2:	14
Unit 3:	24
Unit 4:	31
Unit 5:	37
Modifications	45
NGSS Resources	46

District Mission Statement

The mission of the Hillside Public Schools is to ensure that all students at all grade levels achieve the Next Generation Science Standards and make connections to real-world success. We are committed to strong parent-community school partnerships, providing a safe, engaging, and effective learning environment, and supporting a comprehensive system of academic and developmental support that meets the unique needs of each individual.

Academic Area Overview

The Hillside Township School District is committed to excellence. We believe that all children are entitled to an education that will equip them to become productive citizens of the twenty-first century. We believe that an education grounded in the fundamental principles of science will provide students with the skills and content necessary to become our future leaders.

A sound science education is grounded in the principles of inquiry and rigor. Children are actively engaged in learning as they model real-world scientific behaviors to construct knowledge. They have ample opportunities to manipulate materials in ways that are developmentally appropriate to their age. They work in an environment that encourages them to take risks, think critically, and make models, note patterns and anomalies in those patterns. Children are encouraged to ask questions, not just the "how" and the "what" of observed phenomena, but also the "why".

Our program provides teachers with cost-effective science materials that are aligned to state and national standards, incorporate instructional strategies that are research-based, and provides teachers with a deep understanding of science and the pedagogical underpinnings of science. Our teachers receive quality professional development through a partnership with nearby districts. Our K-8 kit based program encourages "hands-on science" and is endorsed by the National Science Foundation.

Equality and Equity in Curriculum

The Hillside Township School District ensures that the district's curriculum and instruction are aligned to the Next Generation Science Standards and addresses the elimination of discrimination and the achievement gap, as identified by underperforming school-level AYP reports for State assessment, by providing equity in educational programs and by providing opportunities for students to interact positively with others regardless of race, creed, color, national origin, ancestry, age, marital status, affectional or sexual orientation, gender, religion, disability or socioeconomic status.

N.J.A.C. 6A:7-1.7(b): Section 504, Rehabilitation Act of 1973; N.J.S.A. 10:5; Title IX, Education Amendments of 1972

Honors Curriculum

The content of an Honors course is organized to include more elaborate, complex, in-depth study of major ideas, problems and themes that integrate knowledge within a given academic subject. Emphasis is placed on higher-level thinking skills, creativity and excellence of performance. Students are selected for honors courses by state test data, previous course grades, and teacher recommendation. These students have been identified as being capable of above-average work. To maintain enrollment in Honor courses, students must maintain a marking period average of 'B' or above. In the event a marking period average falls under a 'B', a review process consisting of the student's counselor seeking input from the teacher regarding the placement of the student will take place. If removal from the Honor course is recommended, a parent conference with the student's counselor and teacher will be conducted.

All science department courses at Hillside High School prepare students with the knowledge and critical thinking skills necessary for study at the college level. The Honors Science courses are designed to support students seeking an additional challenge in their high school coursework, leading to the pursuit of STEM career paths. These honors courses stress the intellectual role of the student as they grapple with key concepts of science in increased depth. Emphasis will be on the analysis and application of data to make sense of major scientific concepts and principles. Students will learn by designing experiments, performing independent research, and working with models of systems at the nanoscopic, microscopic, and macroscopic levels.

To be successful in an Honors Science course, a student must be prepared to work both independently and cooperatively inside and outside of class. Students will also be required to apply more rigorous mathematical skills in Honors science, so it is recommended that students electing to take Honors Science courses have strong grades in their Math coursework. Students succeeding in Honors Science courses are prepared for success at the honors level the following year in the corresponding discipline.

• In this document, the Honors Level components are indicated in bold purple text.

Science Department Lesson Plan Template

Lesson Information

Lesson Name:	
Unit:	
Date:	

Lesson Data

1.	Essential Question:	
2.	NGSS:	
3.	DCI :	Students will know
		Students will be able to 5

4. Practices:

5.	Crosscutting Concepts:	Students will apply
6.	Assessment:	Evidence of student learning:

7. Lesson Agenda:

Include in Lesson Outline:

- Anticipated timing
- *DO*
- Activities and Investigations
- Discussion prompts
- Journal wNOW riting prompts
- Student uses of technology
- Safety precautions
- Materials

8. Homework:

UNIT 1: <u>Measurement and Communication in Physics</u>

EN	DURING UNDERSTANDINGS	ESSENTIAL QUESTI	ONS
 Science is the study and discovery of the world around us. Science requires the collection and use of evidence. Scientific knowledge varies in its level of certainty. Scientists work together in a community to share and critique ideas. Repeating experiments leads to more reliable and convincing data. 		 How do we collect data/evidence? How do we communicate scientific evidence? How is scientific data represented and analyzed? How are math practices incorporated in physics? 	
		·	
Students Learning Objectives	Disciplinary Core Ideas Students will know:	Practices of Science & Engineering & Additional Skills Students will be able to:	Cross Cutting Concepts Students will apply:

	Thistee Township School District				
CCSS.M.MP1	Disciplinary Core Ideas			Science and Engineering Practices	Crosscutting Concepts
Make sense of	CCSS.M.MP1				Cause and Effect (pp. 87-89, NRC,
problems and	• explain to themselves the meaning of a problem	•		Asking questions (for science) and defining	2012)
persevere while	and looking for entry points to its solution.			problems (for engineering)	 Empirical evidence is required to
solving them.	• analyze givens, constraints, relationships, and			• Ask questions	differentiate between cause and
	goals.			 that arise from careful observation of 	correlation and make claims about
CCSS.M.MP2	 explain correspondences between equations, 			phenomena, or unexpected results, to	specific causes and effects. (HS-PS2-1)
Reason abstractly	verbal descriptions, tables, and graphs.			clarify and/or seek additional	• Systems can be designed to cause a
and quantitatively.	 draw diagrams of important features and 			information.	desired effect (HS DS2 3)
	relationships, graph data, and search for regularity			that arise from examining models or a	desired eneet. (113-1 32-3)
CCSS.M.MP3	or trends.			theory, to clarify and/or seek	Scale Proportion and Quantity (pp.
Construct viable	 ask themselves, "Does this make sense?" 			additional information and	89-91, NRC, 2012)
arguments and	• understand the approaches of others to solving			relationships.	• The significance of a phenomenon is
critique the	complex problems			■ to determine relationships, including	dependent on the scale, proportion, and
reasoning of others.				quantitative relationships, between	quantity at which it occurs.
	CCSS.M.MP2			independent and dependent variables.	
CCSS.M.MP4	• make sense of quantities and their relationships			■ to clarify and refine a model, an	Systems and System Models (pp. 91-94,
Model with	in problem situations.			explanation, or an engineering	NRC, 2012)
mathematics.	• use quantitative reasoning that entails creating a			problem.	• When investigating or describing a
	coherent representation of quantities, not just how	•)	Developing and using models	system, the boundaries and initial
CCSS-M.MP5	to compute them			• Develop, revise, and/or use a model based	conditions of the system need to be
Use appropriate	• know and flexibly use different properties of			on evidence to illustrate and/or predict the	defined. (HS-PS2-2)
tools strategically.	operations and objects.			relationships between systems or between	
				components of a system	
CCSS-M.MP6	CCSS.M.MP3			• Develop and/or use a model (including	Connections to Nature of Science
Attend to precision.	• understand and use stated assumptions,			mainematical and computational) to	Science Models, Laws, Mechanisms,
	definitions, and previously established results in			generate data to support explanations,	and Theories Explain Natural
HSN.Q.A.1	constructing arguments.			predict phenomena, anaryze systems, and/or	Phenomena (pp. 96-101, Appendix H:
Use units a way to	• make conjectures and build a logical progression			Solve problems	NRC. 2013)
understand	of statements to explore the truth of their	•		Dian an investigation or test a design	
problems and to	conjectures.			o Flan an investigation of test a design	• Theories and laws provide explanations
guide the solution	• analyze situations by breaking them into cases			data to serve as the basis for evidence as	in science. (HS-PS2-1)
of multi-step	• recognize and use counterexamples.			part of building and revising models	• Laws are statements or descriptions of
problems; choose	• JUSTIFY their conclusions, communicate them to			supporting explanations for phenomenal or	the relationships among observable
and interpret units	others, and respond to the arguments of others.			testing solutions to problems. Consider	phenomena. (HS-PS2-1)
consistently in	• reason inductively about data, making plausible			nossible confounding variables or effects	· · · · · ·
formulas; choose	arguments that take into account the context			possible combunding variables of effects	

and interpret a scale • compare the effectiveness of plausible and evaluate the investigation's design to and the origin in arguments ensure variables are controlled. graphs and data • distinguish correct logic or reasoning from that Make directional hypotheses that specify 0 displays. which is flawed what happens to a dependent variable when • listen or read the arguments of others, decide an independent variable is manipulated. HSA.CED.A.4 whether they make sense, and ask useful Analyzing and interpreting data Rearrange formulas Analyze data using tools, technologies, questions 0 and/or models (e.g., computational, to highlight a quantity of interest, CCSS.M.MP4 mathematical) in order to make valid and • apply the mathematics they know to solve using the same reliable scientific claims or determine an problems arising in everyday life, society, and the reasoning as in optimal design solution. solving equations. Apply concepts of statistics and probability workplace. 0 • simplify a complicated situation, realizing that (including determining function fits to data, HSE.IE.C.7 these may need revision later. slope, intercept, and correlation coefficient Graph functions • identify important quantities in a practical for linear fits) to scientific and engineering questions and problems, using digital tools expressed situation symbolically and • map their relationships using such tools as when feasible show key features diagrams, two-way tables, graphs, flowcharts and Using mathematics and computational thinking of the graph, by formulas. Apply techniques of algebra and functions 0 hand in simple • analyze those relationships mathematically to to represent and solve scientific and cases and using draw conclusions. engineering problems technology for Apply ratios, rates, percentages, and unit • interpret their mathematical results in the 0 conversions in the context of complicated more complicated context of the situation. • reflect on whether the results make sense. cases measurement problems involving quantities with derived or compound units (such as possibly improving the model if it has not served mg/mL, kg/m3, acre-feet, etc.). its purpose. CCSS.M.MP5 Constructing explanations (for science) and • designing solutions (for engineering) • consider available tools when solving a mathematical problem. Make a quantitative and/or qualitative claim 0 • are familiar with tools appropriate for their regarding the relationship between grade or course to make sound decisions about dependent and independent variables. when each of these tools Construct and revise an explanation based 0 • detect possible errors by using estimations and on valid and reliable evidence obtained other mathematical knowledge. from a variety of sources (including • know that technology can enable them to students' own investigations, models, visualize the results of varying assumptions, and theories, simulations, peer review) and the explore consequences. assumption that theories and laws that

• identify relevant mathematical resources and use		describe the natural world operate today as	
them to pose or solve problems.		they did in the past and will continue to do	
• use technological tools to explore and deepen		so in the future.	
their understanding of concepts.	0	Apply scientific ideas, principles, and/or	
		evidence to provide an explanation of	
CCSS.M.MP6		phenomena and solve design problems,	
• try to communicate precisely to others.		taking into account possible unanticipated	
• use clear definitions in discussion with others		effects.	
and in their own reasoning.	0	Apply scientific reasoning, theory, and/or	
• state the meaning of the symbols they choose,		models to link evidence to the claims to	
including using the equal sign consistently and		assess the extent to which the reasoning and	
appropriately.		data support the explanation or conclusion	
• specify units of measure and label axes to clarify	 Enga 	aging in argument from evidence	
the correspondence with quantities in a problem.	0	Evaluate the claims, evidence, and/or	
 calculate accurately and efficiently, express 		reasoning behind currently accepted	
numerical answers with a degree of precision		explanations or solutions to determine the	
appropriate for the context.		merits of arguments.	
	0	Respectfully provide and/or receive	
		critiques on scientific arguments by probing	
		reasoning and evidence, challenging ideas	
		and conclusions, responding thoughtfully to	
		diverse perspectives, and determining	
		additional information required to resolve	
		contradictions.	
	0	Construct, use, and/or present an oral and	
		written argument or counter-arguments	
		based on data and evidence.	
	• Obta	aining, evaluating, and communicating	
	infor	rmation	
	0	Compare, integrate and evaluate sources of	
		information presented in different media or	
		formats (e.g., visually, quantitatively) as	
		well as in words in order to address a	
		scientific question or solve a problem	
	0	Communicate scientific and/or technical	
		information or ideas (e.g. about phenomena	
		and/or the process of development and the	

	1	
	design and performance of a proposed process or system) in multiple formats (i.e., orally, graphically, textually, mathematically).	
	Additional Skills	
	 Maintain a Lab Notebook Identify major laws and theories within the content area Distinguish between the type and amount of certainty expressed by scientific laws, theories, and hypotheses Apply scientific laws and theories to authentic situations Monitor one's own thinking as understandings of scientific concepts are refined 	

Pacing Chart Unit 1: <u>Measurement and Communication</u> Grade 9

TIME FRAME	ΤΟΡΙϹ	PERFORMANCE TASKS ACTIVITIES/PROJECTS ASSESSMENTS	RESOURCES/INTERDISCIPLINARY CONNECTIONS
1-2 days	Introduction to Physics	Getting to Know You Bingo Lay of the Land - Classroom Procedures - Where are things in the room? Lab Activity Safety	Getting to Know You Bingo <u>http://1.bp.blogspot.com/-9cb-C-G1C7M/UChXngB1QrI/A</u> <u>AAAAAAAAi4/3jS19deG7vo/s1600/GetToKnowYouBing</u> <u>o5th.jpg</u>
2-3 days	Making Observations	 Wood cylinder Activity Reaction time: Measuring Reaction time of students grabbing a meter stick. Measure distance to generate reaction time by reading free fall graph Calculating Average Measurement Activity Stations of Measurement (measuring objects with 6 in ruler, 1 foot ruler, and meter stick; measuring weight of individual; measuring item with electronic balance; measuring height of student; measuring "wing span"; measure length and width of table with 1 foot ruler and 	http://www.sdcda.org/office/girlsonlytoolkit/toolkit/got-02- getting-to-know-you.pdf Classroom Procedures https://www.dropbox.com/s/jombt3tb2jyyp3j/Classroom% 20Procedures.docx?dl=0 Lab Safety https://www.dropbox.com/s/onwr74hlypi8l9r/Flinn%20Saf ety%20Contract.pdf?dl=0 Reaction Time: https://www.dropbox.com/s/5f8i6d55u1ahnpq/Reaction%2 0Time%20Lab.notebook?dl=0 http://www.humanbenchmark.com/
	Application of Mathematics	Mathematics Diagnostic Basic Unit System: - Students make Reference Unit Table - Teacher models it on Unit Word Wall	https://www.youtube.com/watch?v=pEeEW9ZHx50 Unit Conversion: https://www.youtube.com/watch?v=XKCZn5MLKvk

- Matching Units Game https://	ps://www.dropbox.com/s/4hb5fv7klim4zbb/Measuremen
Calculating average of data set - Calculating their own grade average - Processing the average of student reaction time data - Unit Conversion - - Metric to Metric - Metric to Standard; Standard to Metric - Converting data from Stations of Measurement - Mathematics Assessment Practical: Measuring length and width of room for wall-to-wall carpeting Graphing and graphical analysis - - WIS/WIM - Small Group Activity & Gallery Walk: Student lab groups will receive a piece of graphing chart paper and a set of data to graph. Students will then perform a gallery walk to rate the graphs based on the graphing rubric. - Graphing rubric - Slope - Mathematical Model - y = mx + b Mttps: - Wisual thtps: - - Sprea	20Assessment%20Practical.docx?dl=0 mplified for IEP students ps://www.youtube.com/watch?v=ppaCtBbwISo ps://www.youtube.com/watch?v=XKCZn5MLKvk ps://www.youtube.com/watch?v=kkc5f7Gcj8s ps://www.youtube.com/watch?v=iwrAvse-ONA ps://www.youtube.com/watch?v=iwrAvse-ONA ps://www.youtube.com/watch?v=HHDmFCxCugc athematics Diagnostic: p://cstephenmurray.com/Acrobatfiles/IPC/ch1and2/Word oblemprimer.pdf ps://www.dropbox.com/s/e7h4xa7hh1x5u4s/Problem%2 olving%20Strategies%20for%20NB.JPG?dl=0 aphing and graphical analysis nall Group Graphing Exercise and Gallery Walk ps://www.dropbox.com/s/zt7820g904r1iod/Graphing%2 ubric%20-%20Classroom%20Version.doc?dl=0 p://cstephenmurray.com/Acrobatfiles/aphysics/NotesAn xamples/OneDimensionalMotion/howtofindslope.pdf sual Rep Graph Tutotial ps://www.youtube.com/watch?v=9BkbYeTC6Mo readsheet Graphing ps://www.youtube.com/watch?v=yvYvHU83_6Y
IEP (https:/	P Graphing ps://www.youtube.com/watch?v=GUYRMdcEs00

UNIT 2 : Forces and Motion

ENDURING UNDERSTANDINGS		ESSENTIAI	LQUESTIONS
 The change of the position its motion. In order for motion to chan All physical objects in the rinteraction happens as a res Newton's second law accummacroscopic objects, but it speeds close to the speed of rame of reference; it is the system, total momentum is 	and the change in speed of an object determines ge, an unbalanced force must be applied. universe interact with one another. Each sult of some type of force. rately predicts changes in the motion of requires revision for subatomic scales or for f light. Momentum is defined for a particular mass times the velocity of the object. In any always conserved (p. 116, Framework).	 How can we describe motion in th How can one predict an object's c stability? How can we describe force in the What is affect of forces on objects 	ne world around us? continued motion, changes in motion, or world around us? s and an objects motion?
Student Learning Objectives Disciplinary Core Ideas with Extended Student Learning Objectives Students will know:		Practices of Science & Engineering with Additional Skills Students will be able to:	Cross Cutting Concepts Students will apply:

1. Given a graph of position or velocity as a function of time, recognize in what time intervals the position, velocity and acceleration of an object are positive, negative, or zero and sketch a graph of each quantity as a function of time. **HS.PS2.A** *[Clarification Statement: Students should be able to accurately move from one representation of motion to another.]*

2. Represent forces in diagrams or mathematically using appropriately labeled vectors with magnitude, direction, and units during the analysis of a situation. HS.PS2.A

3. Understand and apply the relationship between the net force exerted on an object, its inertial mass, and its acceleration to a variety of situations. **HS.PS2.A**

4. Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration. HS-PS2-1 [Clarification Statement: Examples of data could include tables or graphs of position or

Disciplinary Core Ideas

PS2.A: Forces and Motion (pp. 114-116, NRC, 2012)

- Newton's second law accurately predicts changes in the motion of macroscopic objects. (SLO 1, 2 & 3),(HS-PS2-1)
- Momentum is defined for a particular frame of reference; it is the mass times the velocity of the object. (SLO 5),(HS-PS2-2)
- If a system interacts with objects outside itself, the total momentum of the system can change; however, any such change is balanced by changes in the momentum of objects outside the system.
 (US PS2 2) (US PS2 2) (SLO 5)

(HS-PS2-2),(HS-PS2-3),(SLO 5)

ETS1.A: Defining and Delimiting an Engineering Problem (pp. 204-206, NRC, 2012)

• Criteria and constraints also include satisfying any requirements set by society, such as taking issues of risk mitigation into account, and they should be quantified to the extent possible and stated in such a way that one can tell if a given design meets them. *(secondary to HS-PS2-3)*

ETS1.C: Optimizing the Design Solution (pp. 208-210, NRC, 2012)

• Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (HS-PS2-3)

Knowledge

Science and Engineering Practices

Planning and Carrying out Investigations (pp. 59-61, NRC, 2012) Planning and carrying out investigations in 9-12 builds on K-8 experiences and progresses to include investigations that provide evidence for and test conceptual, mathematical, physical, and empirical models.

• Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly. (HS-PS2-1),(HS-PS2-3)

Analyzing and Interpreting Data (pp. 61-63, NRC, 2012)

Analyzing data in 9–12 builds on K–8 and progresses to introducing more detailed statistical analysis, the comparison of data sets for consistency, and the use of models to generate and analyze data.

• Analyze data using tools, technologies, and/or models (e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution. (SLO 1, 2 & 3), (HS-PS2-1)

Crosscutting Concepts

Cause and Effect (pp. 87-89, NRC, 2012)

- Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. (HS-PS2-1)
- Systems can be designed to cause a desired effect. (HS-PS2-3)

Systems and System Models (pp. 91-94, NRC, 2012)

• When investigating or describing a system, the boundaries and initial conditions of the system need to be defined. (HS-PS2-2

Connections to Nature of Science

Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena (pp. 96-101, Appendix H: NRC, 2013)

- Theories and laws provide explanations in science. (HS-PS2-1)
- Laws are statements or descriptions of the relationships among observable phenomena. (HS-PS2-1)

velocity as a function of time for objects subject to a net unbalanced force, such as a falling object, an object rolling down a ramp, or a moving object being pulled by a constant force.] [Assessment Boundary: Assessment is limited to one-dimensional motion and to macroscopic objects moving at non-relativistic speeds.]

5. Predict the change in momentum of an object from the average force exerted on the object and the interval of time during which the force is exerted. **HS.PS2.A**

6. Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system. **HS-PS2-2**

[Clarification Statement: Emphasis is on the quantitative conservation of momentum in interactions and the qualitative meaning of this principle.] [Assessment Boundary: Assessment is limited to systems of two macroscopic bodies moving in one dimension.]

- Speed is defined as the distance traveled divided by the time it took to travel that distance and is measured in m/s. (v=d/t)
- Velocity incorporates speed and the direction.
- Acceleration is defined as the change in velocity divided by the time it took to change that velocity and is measured in m/s². (a = v/t)
- Newton's first law of motion states that an object at rest will remain at rest or an object in motion will remain in motion unless an unbalanced force is applied.
- Inertia is an object's natural tendency to remain in its current state (at rest or in motion) and is directly related to an object's mass.
- Newton's Second Law of Motion states that object's acceleration is directly proportional to the force applied to it and inversely proportional to the mass of the object.
- The direction of the acceleration is the same as the direction of the unbalanced force. (F=ma)
- Friction is a force that opposes motion because of the types of surfaces interacting.
- Mass is the amount of matter an object has and is measured in grams.

Using Mathematics and Computational Thinking (pp. 64-67, NRC, 2012)Mathematical and computational thinking at the 9–12 level builds on K–8 and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions.

• Use mathematical representations of phenomena to describe explanations. (SLO 1, 2 & 4), (HS-PS2-2)

Constructing Explanations and Designing Solutions (pp. 67-71, NRC, 2012)

Constructing explanations and designing solutions in 9–12 builds on K–8 experiences and progresses to explanations and designs that are supported by multiple and independent student-generated sources of evidence consistent with scientific ideas, principles, and theories.

• Apply scientific ideas to solve a design problem, taking into account possible unanticipated effects. (HS-PS2-3)

7. Make qualitative predictions about natural phenomena based on conservation of momentum and restoration of kinetic energy in elastic collisions. **HS.PS2.A**

8. Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision.* HS-PS2-3 [Clarification Statement: *Examples of evaluation and* refinement could include determining the success of the *device at protecting an object from* damage and modifying the design to improve it. Examples of a *device could include a football helmet or a parachute.*] [Assessment Boundary: Assessment is limited to *aualitative evaluations and/or algebraic manipulations.*]

- Weight is the amount of gravitational pull on an object. (F_w=mg) and is measured in Newtons.
- All objects exert a gravitational pull on one another. This pull is relative to the mass of the objects and the distance between them.
- Newton's Third Law of Motion states that every force has an equal and opposite reactive force.
- Momentum is equal to the object's mass times the object's velocity. (p=mv)
- The total momentum of a system remains constant unless an external force is exerted on the system.
- Impulse is due to an object external to the system exerting a force on the system object for a given time interval. (I=F\Deltat)

Additional Skills

- Create a graph of position vs. time
- Interpret a graph of position vs. time
- Make a prediction regarding motion based on graphs
- Draw strobe photos to represent motion
- Use v=d/t to calculate velocity, distance, or time
- Apply understanding of speed and velocity to authentic situations
- Create a graph of speed vs. time
- Interpret a graph of speed vs. time
- Make a prediction regarding motion based on graphs
- Use a=v/t to calculate acceleration, velocity, or time
- Compare the calculated and measured speed, average speed, and acceleration of an object in motion, and account for differences that may exist between calculated and measured values
- Apply understanding of acceleration to authentic situations
 Draw force diagrams
- Draw force diagrams

	 Interpret force diagrams Apply Newton's First Law to predict the motion of an object based on the forces applied Compare the inertia of two objects Create simple models to demonstrate the benefits of seatbelts using Newton's first law of motion Apply understanding of inertia to authentic situations Draw force diagrams Interpret force diagrams Use F=ma to explain Newton's Second Law Use F=ma to calculate force, mass, or acceleration Use F_w=mg to explain and distinguish between weight and mass Measure and describe the relationship between the force acting on an object and the resulting acceleration
	 mass Measure and describe the relationship between the force acting on an object and the resulting acceleration Compare an object's weight in different gravitational
	 Apply understanding of Newton's Second Law to authentic situations

	 Draw force diagrams Interpret force diagrams Explain Newton's Third Law in student's words Apply Newton's Third Law to authentic situations Construct Momentum bar charts. Identify initial and final states of system. Learn to apply the ideas of impulse and momentum to the world around us. Use p=mv to solve for momentum, mass, and velocity Use I=F∆t to solve for impulse, force, and time interval Use I=m∆v to solve for impulse, mass, and change in velocity
--	--

Pacing Chart Unit 2:<u>Forces and Motion</u> Grade 9

TIME FRAME	ΤΟΡΙϹ	PERFORMANCE TASKS ACTIVITIES/PROJECTS ASSESSMENTS	RESOURCES/INTERDISCIPLINARY CONNECTIONS
3-4 days	Frames of Reference	 Frames of Reference Watching videos on Frames of Reference. Observing pictures and determining origin and positive and negative directions within the picture and in real life. I² Strategy of interpreting pictures and graphs 	Frames of Reference <u>YouTube playlist on frame of reference.</u>
		 Reviewing motion diagrams, dot diagrams, x-t graphs and v-t graphs. Using "What I See" and "What it means" to develop means of identification of what is in a graph or picture and develop a means of interpretation and making meaning based on what is identified. 	Interpreting Time-Distance Matching Activity Motion/Dot Diagrams Position-Time Graphs
4-5 days	Motion & Dot Diagrams	 Dot Diagrams Car Oil Problem same size spacing - constant motion different size spacing - changing motion Small Spacing - slow Large Spacing - Fast Changing Spaces -Slow Down & Velocity Constant Velocity Claim Evidence Reasoning - Buggie Lab with Sugar Packets/Markers Lab Report on Google Doc & Sheets Create graph using google sheets 	Speed/Velocity Connecting Motion/Dot Diagrams, Position-Time Graphs, Velocity-Time Graphs Acceleration & Free Fall Force Tutorial for52 IEP <u>https://www.youtube.com/watch?v=WwMiB30</u> <u>vh40</u>

3-4 days	Position-Time Graphing	 Graphing Assignment Qualitative view on slope Constant, changing, no slope Graph interpretation Activity: Students will be given 10 cards with position-time graphs, position-time data tables, and motion stories where students will match the respective graph, data table and motion Free Response Assignment: Students will create their own original motion story with corresponding graph and data table. 	Force Description https://www.youtube.com/watch?v=uoKo3Dbf YZk Force Diagrams https://www.youtube.com/watch?v=2jYPcj5tQ bI Free Body Diagrams
3-4 days	Speed/Velocity	 GUESS method for calculating Velocity, Displacement, & Time Buggy Collision Lab students develop method for measuring speed use constant velocity and proportions to predict point of collision 	Intps://www.youtube.com/watch?v=ArOEEynn zaI https://www.youtube.com/watch?v=91QYouih4 bQ Constant Motion https://app.discoveryeducation.com/learn/vide os/436655CD-DC1A-4039-BD73-51A30610F05 A
5-7 days	Connecting motion diagrams to position-time & velocity-time graphs	 Multiple Representations Lessons/Activity: Connect Dot Diagrams, x-t graphs, and slope to introduce v-t graphs Calculate vf, vi, a, and t using vf = vi + at using GUESS METHOD Toy Car Challenge students collect velocity data using Beespi velocimeter of Matchbox and Hot Wheels toy cars graph position-time and velocity-time data using Google Sheets to interpret the average velocity and acceleration of cars. 	FearofPhysics.com
7-10 days	Acceleration & Free Fall	Free Fall equation $\Delta x = \frac{1}{2}at^2$ - Hang Time - Students jump with a sticky note and calculate their hang time $t = \sqrt{2g/\Delta x}$ Discrepant Free Fall - Drop a Heavy Object and a Light Object - Students will have to make a prediction and test	

		 Students will use kinematic equations to determine the acceleration due to gravity. Soda Bottle Rocket Challenge Engineering Design project where students will apply their knowledge of hang time to determine how high their rockets will travel. Students will complete data table with formulas to calculate time of flight to maximum height, take off speed, and maximum height. 	
	Forces	Force As Interaction - Tennis Ball & Medicine Ball - Represent the forces on the two balls	
30 days		 Free Body Diagrams Make diagram of force on an object using PhET simulation (Force and Motion Basics). Gallery walk on force diagrams and determining net force. Create your own force diagram for students to respond. 	
		Calculating Force - Use of GUESS method to calculate net force and through using Newton's Second Law (F=ma)	
		Newton's Laws of Motion - Identifying which law affects the motion of an object.	
		 Friction Use of PhET Force Motion Basics to see the effects of mass, force, and friction on the acceleration of an object. Mu of the shoe lab activity to determine the effect of the friction of different flooring to different shoes. 	
		Calculating Net Force - Use of force diagram and GUESS method to determine the forces on an object and the net force and acceleration on an object	

		 Paper Bridge and Straw Bridge Engineering Design Challenges Engineering design challenge for students to construct a bridge from 8 ¹/₂ x 11 sheets of paper and straws where students will apply their knowledge of forces. 	
	Momentum	 Calculating impulse and momentum Use of GUESS method to determine the impulse and momentum using the following: force x time = mass x velocity 	
25 days		 Law of Conservation of Momentum Loosing my marble lab: Applying knowledge of momentum of marble collisions going down a ramp "What happens when two things collide" simulation: Applying knowledge of collision of different vehicles traveling at different velocities. Calculate and develop a data table of momentum of different vehicles. 	
		 Egg Car Crash Engineering Design Challenge Develop and construct a car that will factor in the impulse-momentum theorem to prevent an egg from getting damaged in a car crash into a wall at the bottom of a ramp. 	

UNIT 3: Energy

ENDURING UNDERSTANDINGS		ESSENTIAL QUEST	IONS
 Energy is always conserved; it is neither created nor destroyed. Energy comes in different forms and can change from one form to another. Energy is the ability of an object to do work. 		 ✓ How can we represent energy in the world around us? ✓ Where does energy go? 	
NGSS Disc Performance Expectation St	sciplinary Core Ideas Students will know:	Practices of Science & Engineering Students will be able to:	Cross Cutting Concepts Students will apply:
 Identify and quantify the various types of energies within a system of objects in a well-defined state, such as elastic potential energy, gravitational potential energy, kinetic energy, and thermal energy and represent how these energies may change over time. PS3.A, PS3.B Ene dest from the temperature of the temperature of the temperature of temperature	sciplinary Core Ideas Work & Energy ergy is neither created nor stroyed and can change on one form to another. is is the Law of onservation of Energy. tential Energy is energy ored and there are various rms: Gravitational potential energy is the energy of position. This can be calculated by multiplying the height, mass, and gravitational constant. (GPE= mgh)	 Science and Engineering Practices Produce and identify electrically charged objects at the macroscopic scale Use models and simulations to represent and study a nanoscopic process at a macroscopic scale and develop explanations Use Coulomb's law to predict or determine the relative electrostatic force between two objects Account for all charges being conserved in a closed system Apply understanding of charges to authentic situations 	 Crosscutting Concepts Cause and Effect Cause and effect relationships can be suggested and predicted for complex natural and human designed systems by examining what is known about smaller scale mechanisms within the system. (HS-PS3-2) Systems and System Models When investigating or describing a system, the boundaries and initial conditions of the system need to be defined and their inputs and outputs analyzed and described using models. (SLO 2) Models can be used to predict the behavior of a system, but these predictions have limited precision and

reliability due to the assumptions and Elastic 0 potential approximations inherent in models. energy is (SLO 1 & 2), (<u>HS-PS3-1</u>), (<u>HS-PS3-2</u>) energy due to **Energy and Matter** stretch or • Changes of energy and matter in a compression. system can be described in terms of This can be energy and matter flows into, out of, calculated and within that system. (SLO 2), using the (<u>HS-PS3-3</u>) amount of stretch and the • Energy cannot be created or destroyed—only moves between one spring place and another place, between constant. $(EPE=1/2 kx^2)$ objects and/or fields, or between Kinetic energy is energy of systems. (SLO 2),(<u>HS-PS3-1</u>),(• motion. (KE= $\frac{1}{2}$ mv²) HS-PS3-2) • Energy can be transferred from one object to another. Energy can be used to do ٠ work. Connections to Engineering, Technology, Work is the force supplied ٠ and Applications of Science over a certain distance. Influence of Science, Engineering and (W=Fd) Technology on Society and the Natural Power is the amount of work World • • Modern civilization depends on major done in a certain time. (P=W/t)technological systems. Engineers continuously modify these Kev Terms: elastic potential technological systems by applying energy, energy, gravitational scientific knowledge and engineering potential energy, kinetic energy, design practices to increase benefits Law of Conservation of Energy, while decreasing costs and risks. potential energy, power, work (<u>HS-PS3-3</u>) **Connections to Nature of Science** Scientific Knowledge Assumes an Order and Consistency in Natural Systems

		• Science assumes the universe is a vast single system in which basic laws are consistent. (<u>HS-PS3-1</u>)
2. Calculate changes in kinetic energy and gravitational potential energy of a system using representations of that system. PS3.A		
3. Construct an explanation, using atomic-scale interactions and probability, of how a closed system approaches thermal equilibrium after energy is transferred to it or from it in a thermal process. PS3.A		

4. Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative positions of particles (objects). HS-PS3-2 [Clarification Statement: Examples of phenomena at the macroscopic scale could include the conversion of		
kinetic energy to thermal		
energy, the energy stored		
due to position of an object		
above the earth, and the energy stored between two		
electrically-charged plates.		
Examples of models could		
include diagrams, ardwings, descriptions and computer		
simulations.]		

5 Create a computational		
5. Create a computational		
model to calculate the		
change in the energy of one		
component in a system when		
d 1		
the change in energy of the		
other component(s) and		
energy flows in and out of		
the system are known.		
HS-PS3-1/ <i>Clarification</i>		
Statement: Emphasis is on		
statement. Emphasis is on		
explaining the meaning of		
mathematical expressions		
used in the model.]		
[Assessment Boundary:		
Assessment is limited to		
hasic algebraic expressions		
ou computational to matema		
or computations, to systems		
of two or three components;		
and to thermal energy,		
kinetic energy, and/or the		
energies in gravitational		
Jielas.J		

Pacing Chart Unit 3: <u>Energy</u> Grade 9

TIME FRAME	ΤΟΡΙϹ	PERFORMANCE TASKS ACTIVITIES/PROJECTS ASSESSMENTS	RESOURCES/INTERDISCIPLINAR Y CONNECTIONS
3-4 days	Work and Force	Does the direction of force affect the amount of energy imparted upon an object? - To develop concept that work is related to the magnitude and direction of force.	Work-Power Lab Work-Power POGIL
		 What factors affect the energy of an object and its ability to do work? Compare factors of height of drop and mass of objects to the size and depth of craters in the sand 	<u>KE and PE of Marble Collisions</u> <u>KE and PE of Pendulums</u>
3-4 days	Kinetic Energy Potential Energy (Gravitational Potential Energy & Elastic Potential)	Use of GUESS method to calculate kinetic energy (KE = $\frac{1}{2}$ mv ²) and potential energy (mgh)	Car Ramps and Total Mechanical EnergyRoller Coaster PhysicsEnergy Skate Park - PhETThe Spring of Things - Hooke's Law LabCatapult Engineering Design ChallengePlaylist on Catapults
7-10 days	Work and Power	- Use GUESS method to calculate and relate work and power.	

		 Work-Power Lab: Collecting time data on how long it takes to complete certain tasks to determine the amount of work and power is exerted. Work-Power Processed Oriented Guided Inquiry Lesson (POGIL): Use of models and examples to further reinforce relationship of work, power, and time. 	
15-20 days	Law of Conservation of Energy Total Mechanical Energy	 KE and PE of Marble Collisions KE and PE of Pendulums Car Ramps and Total Mechanical Energy Application of calculating KE and PE change in a system. Comparing data using Google Sheets to compare changes in KE and PE within a system. Roller Coaster Physics POGIL exercise using video on Roller Coasters and examples to determine changes in total mechanical energy Using GUESS method to determine KE, PE, and TME within a system Energy Skate Park PhET simulation to show and model the changes in KE, PE, and TME of a skater on a half-pipe. The Spring of Things Application of elastic potential energy varying the mass of objects on a spring to determine the spring constant. 	
7 days	Engineering Design Challenge: Catapults	Application and synthesis of topics dealing with energy in constructing a siege weapon.	

UNIT 4: Electricity and Magentism

ENDURING UNDERSTANDINGS		ESSENTIAL QUESTIONS	
 Forces at a distance are explained by fields permeating space that can transfer energy through space. Magnets or changing electric fields cause magnetic fields; electric charges or changing magnetic fields cause electric fields Some materials are attracted to each other while other are not Both magnets or electric currents cause magnetic fields Charges or changing magnetic fields cause electric fields 		 How do charges interact with electric How can one explain and predict the i system of objects? 	and magnetic fields? nteractions between objects and within a
NGSS Performance Expectation	Disciplinary Core Ideas Students will know:	Practices of Science & Engineering Students will be able to:	Cross Cutting Concepts Students will apply:

1.Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction.

HS-PS3-5 [Clarification Statement: Examples of models could include drawings, diagrams, and texts, such as drawings of what happens when two charges of opposite polarity are near each other.] [Assessment Boundary: Assessment is limited to systems containing two objects.]

2. Use mathematical representations of Coulomb's Law to describe and predict the electrostatic forces between objects. **HS-PS2-4** [Clarification Statement: Emphasis is on both quantitative and conceptual descriptions of electric fields.] [Assessment Boundary: Assessment is limited to systems with two objects.]

Disciplinary Core Ideas

PS2.B: Types of Interactions

- Newton's law of universal gravitation and Coulomb's law provide the mathematical models to describe and predict the effects of gravitational and electrostatic forces between distant objects. (HS-PS2-4)
- Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric fields. (HS-PS2-4),(HS-PS2-5)
- Attraction and repulsion between electric charges at the atomic scale explain the structure, properties, and transformations of matter, as well as the contact forces between material objects. (HS-PS2-6)

PS3.A: Definitions of Energy

• "Electrical energy" may mean energy stored in a battery or energy transmitted by electric currents. *(secondary to HS-PS2-5)*

PS3.C: Relationship Between Energy and Forces

• When two objects interacting through a field change relative position, the energy stored in the field is changed. (HS-PS3-5)

Knowledge

Science and Engineering Practices

Planning and Carrying Out Investigations

Planning and carrying out investigations to answer questions or test solutions to problems in 9–12 builds on K–8 experiences and progresses to include investigations that provide evidence for and test conceptual, mathematical, physical and empirical models.

• Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly. (HS-PS2-5)

Using Mathematics and Computational Thinking

Mathematical and computational thinking at the 9–12 level builds on K–8 and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions.

• Use mathematical representations of phenomena to describe explanations. (HS-PS2-4)

Crosscutting Concepts

Patterns

• Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena. (HS-PS2-4)

Cause and Effect

- Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. (HS-PS2-5)
- Cause and effect relationships can be suggested and predicted for complex natural and human designed systems by examining what is known about smaller scale mechanisms within the system. (HS-PS3-5)

Structure and Function

- - - - -

 Investigating or designing new systems or structures requires a detailed examination of the properties of different materials, the structures of different components, and connections of components to reveal its function and/or solve a problem. (HS-PS2-6)

Connections to Nature of Science Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena

 3. Make predictions about the sign and relative quantity of net charge of objects or systems after various charging processes. PS2.B 4. Construct an explanation of a model of electric charge, and make a qualitative prediction about the distribution of positive and negative electric charges within neutral systems as they undergo various processes. PS2.B [Clarification Statement: The focus is on the mechanisms that explain conductors and insulators.] 5. Plan and conduct an investigation to provide 	 Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric fields. "Electrical energy" may mean energy stored in a battery or energy transmitted by electric currents. Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. When two objects interacting through a field change relative position, the energy stored in the field is changed. Cause-and-effect relationships between electrical and magnetic fields can be predicted through an understanding of inter- and intra-molecular forces (protons and electrons). 	 Obtaining, Evaluating, and Communicating Information Obtaining, evaluating, and communicating information in 9–12 builds on K–8 and progresses to evaluating the validity and reliability of the claims, methods, and designs. Communicate scientific and technical information (e.g. about the process of development and the design and performance of a proposed process or system) in multiple formats (including orally, graphically, textually, and mathematically). (HS-PS2-6) Developing and Using Models Modeling in 9–12 builds on K–8 and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed worlds. 	 Theories and laws provide explanations in science. (HS-PS2-4) Laws are statements or descriptions of the relationships among observable phenomena. (HS-PS2-4)
evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric current. HS-PS2-5[Assessm ant Boundary: Assessment is	 Charges Matter is made up of particles at the nanoscopic scale. Charges make particles either attract or repel one another. There is a special type of electrical force that 	• Develop and use a model based on evidence to illustrate the relationships between systems or between components of a system. (HS-PS3-5)	
 Imited to designing and conducting investigations with provided materials and tools.] 6. Communicate scientific and technical information about why the 	 exists between charged particles. Electrostatic forces depend on charge and distance between objects (Coulomb's Law). This is analogous to the gravitational force that depends on the mass and distance between objects. 	 Skills Produce and identify electrically charged objects at the macroscopic scale Use models and simulations to represent and study a nanoscopic process at a macroscopic scale and develop explanations 	

<pre>molecular-level structure is important in the functioning of designed materials.* HS-PS2-6 [Clarification Statement: Emphasis is on the attractive and repulsive forces that determine the functioning of the material. Examples could include why electrically conductive materials are often made of metal] [Assessment Boundary: Assessment is limited to provided molecular structures of specific designed materials.] [Teacher Note: The emphasis in this unit is on the electrical properties of materials.]</pre> 7. Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.* [Clarification Statement: Emphasis is on both qualitative and quantitative evaluations of devices. Examples of devices could include Rube	 Charge is conserved in a closed system and distributes out to reach equilibrium. Key Terms: charge, closed system, conservation of charge, Coulomb's law, electrostatic force, equilibrium, matter, nanoscopic Electric Circuits Electricity is the movement of charge. Charges moves through a circuit depending on voltage, current, and number of resistors. Voltage is the energy in Joules for each Coulomb of charge. Current is the rate of flow of charge. When charges are flowing, this is kinetic energy. It is measured in amps. A resistor controls the flow of current. An electrical circuit is a route along which electricity flows continuously. In a series circuit, there is only one path the charge can follow. In a parallel circuit, the charge can take multiple paths. Key Terms: amps, current, closed circuit, coulomb, electrical circuit, electricity, Joule, resistors, series circuit, open circuit, parallel circuit, voltage 	· · · ·	Use Coulomb's law to predict or determine the relative electrostatic force between two objects Account for all charges being conserved in a closed system Apply understanding of charges to authentic situations Design and create functional electrical systems using circuits Use electricity equations: V=IR to calculate, voltage, resistance, and current Compare the utility of parallel and series circuits in an authentic scenario Plan and conduct an investigation individually and collaboratively to produce data that can serve as the basis for evidence that an electric current can produce a magnetic field. Plan and conduct an investigation individually and collaboratively to produce data that can serve as the basis for evidence that a changing magnetic field can produce an electric current. In experimental design, decide on the types, amounts, and accuracy of data needed to produce reliable measurements, consider limitations on the precision of the data, and refine the design accordingly. Collect empirical evidence to support the claim that an electric current can produce a magnetic field.	
quantitative evaluations of devices. Examples of devices could include Rube Goldberg devices, wind turbines, solar cells, solar ovens, and generators.		•	claim that an electric current can produce a magnetic field. Collect empirical evidence to support the claim that a changing magnetic field can produce an electric current.	

Examples of constraints could include use of renewable energy forms and efficiency.] [Assessment Boundary: Assessment for quantitative evaluations is limited to total output for a given input. Assessment is limited to devices constructed with materials provided to students.]	 Develop and use an evidence-based model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction. Suggest and predict cause-and-effect relationships for two objects interacting through electric or magnetic fields.
---	---

Pacing Chart Unit 4: Electricity and Magnetism Grade 9

TIME FRAME	ΤΟΡΙϹ	PERFORMANCE TASKS ACTIVITIES/PROJECTS ASSESSMENTS	RESOURCES/INTERDISCIPLINAR Y CONNECTIONS
2 ¹ / ₂ to 3 Weeks	Current Electricity Series and Parallel Circuits Ohm's Law	CER - Making a light bulb turn on: Guided inquiry activity where students will document how to make a bulb light up with a bulb, battery and wire.Use of Direct Current Interactive from physicsclassroom.com to understand how current, voltage and resistance affect each other in both series and parallel circuits both virtual and hands-on.GUESS method to calculate voltage, current, and resistance in a circuit.	John TravoltageZoom Static ElectricityTypes of ChargingElectrostatics Labhttp://www.physicsclassroom.com/Physic s-Interactives/Static-Electricityhttp://www.physicsclassroom.com/Physic s-Interactives/Electric-Circuitshttp://www.physicsclassroom.com/Physic s-Interactives/Electric-Circuitshttp://www.physicsclassroom.com/Physic s-Interactives/Electric-Circuitshttp://www.physicsclassroom.com/Physic s-Interactives/Electric-Circuitshttp://www.physicsclassroom.com/Physic s-Interactives/Electric-Circuitshttp://www.physicsclassroom.com/Physic s-Interactives/Magnetismhttps://phet.colorado.edu/en/simulations/ category/physics/electricity-magnets-and -circuits NOVA Energy Lab

UNIT 5: <u>Waves and Their Applications</u>

ENDURING UNDERSTANDINGS		ESSENTIAL QUESTIONS	
 The wavelength and frequency of a wave related to one another by the speed of travel of the wave, which depends on the type of wave and the medium through which it is passing. Empirical evidence is required to differentiate between cause and correlation and to make a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media. 		 How are waves used to transfer energy and send and store information? Why has the digital technology replace the analog technology? 	
NGSS Performance Expectation	Disciplinary Core Ideas Students will know:	Practices of Science & Engineering Students will be able to:	Cross Cutting Concepts Students will apply:
1. <u>HS-PS4-1</u> Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media. [Clarification Statement: Examples of data could include electromagnetic radiation traveling in a vacuum and glass, sound waves traveling through air and water, and seismic waves traveling through the Earth.] [Assessment	 Disciplinary Core Ideas PS4.A: Wave Properties The wavelength and frequency of a wave are related to one another by the speed of travel of the wave, which depends on the type of wave and the medium through which it is passing. (HS-PS4-1) Information can be digitized (e.g., a picture stored as the values of an array of pixels); in this form, it can be stored reliably in computer memory and sent over long distances as a series of wave pulses. (HS-PS4-2),(HS-PS4-5) PS4.B: Electromagnetic Radiation 	 Science and Engineering Practices Asking Questions and Defining Problems Asking questions and defining problems in grades 9–12 builds from grades K–8 experiences and progresses to formulating, refining, and evaluating empirically testable questions and design problems using models and simulations. Evaluate questions that challenge the premise(s) of an argument, the interpretation of a data set, or the suitability of a design. (HS-PS4-2) Using Mathematics and Computational Thinking 	 Crosscutting Concepts Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. (HS-PS4-1) Systems can be designed to cause a desired effect. (HS-PS4-5) Systems and System Models Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions—including energy, matter, and information flows—within and

Boundary: Assessment is limited to algebraic relationships and describing those relationships aualitatively.1	• Photoelectric materials emit electrons when they absorb light of a high-enough frequency. (HS-PS4-5)	Mathematical and computational thinking at the 9-12 level builds on K-8 and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including	 between systems at different scales. (HS-PS4-3) Stability and Change Systems can be designed for greater or
qualitatively.]	 Knowledge Waves can add or cancel one another as they cross, depending on their relative phase (i.e., relative position of peaks and troughs of the waves), but they emerge unaffected by each other. Electromagnetic radiation (e.g., radio, microwaves, light) can be modeled as a wave of changing electric and magnetic fields or as particles called photons. The wave model is useful for explaining many features of electromagnetic radiation, and the particle model explains other features. Solar cells are human-made devices that capture the sun's energy and produce electrical energy. Information can be digitized (e.g., a picture stored as the values of an array of pixels); in this form, it can be stored reliably in computer memory and sent over long distances as a series of wave pulses. Photoelectric materials emit electrons when they absorb light of a high enough frequency. Multiple technologies based on the understanding of waves and their interactions with matter are part of everyday experiences in the modern world (e.g., medical imaging, 	 nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions. Use mathematical representations of phenomena or design solutions to describe and/or support claims and/or explanations. (HS-PS4-1) Engaging in Argument from Evidence Engaging in argument from evidence in 9–12 builds on K–8 experiences and progresses to using appropriate and sufficient evidence and scientific reasoning to defend and critique claims and explanations about natural and designed worlds. Arguments may also come from current scientific or historical episodes in science. Evaluate the claims, evidence, and reasoning behind currently accepted explanations or solutions to	 Systems can be designed for greater or lesser stability. (HS-PS4-2) Energy and Matter Energy cannot be created or destroyed-only moved between one place and another place, between objects and/or fields, or between systems. (HS-ESS1-2) Connections to Engineering, Technology, and Applications of Science Interdependence of Science, Engineering, and Technology Science and engineering complement each other in the cycle known as research and development (R&D). (HS-PS4-5) Influence of Engineering, Technology, and Science on Society and the Natural World Modern civilization depends on major technological systems. (HS-PS4-5) Engineers continuously modify these technological systems by applying
	communications, scanners) and in scientific research. They are essential tools for producing, transmitting, and capturing signals and for storing and interpreting the information contained in them.	determine the merits of arguments. (HS-PS4-3) Obtaining, Evaluating, and Communicating Information	scientific knowledge and engineering design practices to increase benefits while decreasing costs and risks. (HS-PS4-2)

 Criteria and constraints also include satisfying any requirements set by society, such as taking issues of risk mitigation into account, and they should be quantified to the extent possible and stated in such a way that one can tell if a given design meets them. Information can be digitized (e.g., a picture stored as the values of an array of pixels); in this form, it can be stored reliably in computer memory and sent over long distances as a series of wave pulses. Systems for transmission and storage of information can be designed for greater or lesser stability. Modern civilization depends on systems for transmission and storage of information. Engineers continuously modify these technological systems for transmission and storage of information by applying scientific knowledge and engineering design practices to increase benefits while decreasing costs and risks. 	 Obtaining, evaluating, and communicating information in 9–12 builds on K–8 and progresses to evaluating the validity and reliability of the claims, methods, and designs. Evaluate the validity and reliability of multiple claims that appear in scientific and technical texts or media reports, verifying the data when possible. (HS-PS4-4) Communicate technical information or ideas (e.g. about phenomena and/or the process of development and the design and performance of a proposed process or system) in multiple formats (including orally, graphically, textually, and mathematically). (HS-PS4-5) Constructing Explanations and Designing Solutions Constructing explanations and designing solutions in 9–12 builds on K–8 experiences and progresses to explanations and designs that are supported by multiple and independent student-generated sources of evidence consistent with scientific ideas, principles, and theories. Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students' own investigations, theories, simulations, peer review) and the assumption that theories and 	 Connections to Engineering, Technology, and Applications of Science Interdependence of Science, Engineering, and Technology Science and engineering complement each other in the cycle known as research and development (R&D). Many R&D projects may involve scientists, engineers, and others with wide ranges of expertise. (HS-ESS1-2) Connections to Nature of Science Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena A scientific theory is a substantiated explanation of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed through observation and experiment and the science community validates each theory before it is accepted. If new evidence is discovered that the theory does not accommodate, the theory is generally modified in light of this new evidence. (HS-PS4-3) Scientific Knowledge Assumes an Order and Consistency in Natural Systems Scientific knowledge is based on the assumption that natural laws operate today as they did in the past and they
---	---	---

	1	1
laws that describe the natural world operate today as they did in the past and will continue to do so in the future. (HS-ESS1-2)	•	will continue to do so in the future. (HS-ESS1-2) Science assumes the universe is a vast single system in which basic laws are consistent. (HS-ESS1-2)
 Skills (Students will be able to) Identify and describe the characteristics of waves, including crests, troughs, speed, frequency, and amplitude Identify nodes and antinodes Use mathematical representations to show relationships among frequency, wavelength, and speed of waves using or, equivalently. Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media. Use algebraic relationships to quantitatively describe relationships among the frequency, wavelength, and speed of waves traveling in various media. Communicate qualitative technical information about how some technological devices use 		consistent. (HS-ESS1-2)
and wave interactions with matter to transmit and capture information and energy.		

	 Communicate technical information or ideas about technological devices that use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy in multiple formats (including orally, graphically, textually, and mathematically). Analyze technological devices that use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy by specifying criteria and constraints for successful solutions. Evaluate a solution offered by technological devices that use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations. Evaluate questions about the advantages of using digital transmission and storage of information by challenging the premise of the advantages of 	
	information by challenging the premise of the advantages of digital transmission and storage of information, interpreting data,	
	and considering the suitability of	

	 digital transmission and storage of information. Consider advantages and disadvantages in the use of digital transmission and storage of information. 	
2 <u>HS-PS4-5</u>		
Communicate technical information about how some technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy.* [Clarification Statement: Examples could include solar cells capturing light and converting it to electricity; medical imaging; and communications technology.] [Assessment Boundary: Assessments are limited to qualitative information. Assessments do not include band theory.]		

3 <u>HS-PS4-2</u>		
Evaluate questions about the		
advantages of using a digital		
transmission and storage of		
information. [Clarification		
Statement: Examples of		
advantages could include that		
digital information is stable		
because it can be stored reliably		
in computer memory,		
transferred easily, and copied		
and shared rapidly.		
Disadvantages could include		
issues of easy deletion, security,		
and theft.]		

Pacing Chart Unit 5: <u>Waves and Their Applications</u> Grade 9

TIME FRAME	ΤΟΡΙϹ	PERFORMANCE TASKS ACTIVITIES/PROJECTS ASSESSMENTS	RESOURCES/INTERDISCIPLINAR Y CONNECTIONS
1 Week	Anatomy of Waves	Students will explore the basics of wave properties. - Amplitude, Period, Wavelength, Frequency, Velocity - Node, AntiNode, Crest, Trough, Guess Method: $T = 1/f$ $f = 1/T$ $v = f(\lambda)$ $E \sim A^2$	http://theuniverseandmore.com/wp-conte nt/uploads/2015/07/WaveTest_secure.swf

2-3 Days	Wave Addition	Wave interference—A wave tank or computer simulation could be used to illustrate interference. - Constructive & destructive interfrence.	https://phet.colorado.edu/en/simulations/ category/physics/sound-and-waves https://www.youtube.com/watch?v=Tdn B6IY1soE
		Standing WavesTacoma Bridge	
1-5	Solar Cells	 Students will use a solar cell to reason the power of wave energy and its transfer to electricity. Extension Solar Cell Car Race 	
1-3 days	Data Transmission	Students will explore the digital tramission of bits.	

Hillside Township School District Modifications

Teacher Note: Teachers identify the modifications that they will use in the unit.

- Teachers will incorporate the appropriate modifications based on student individualized education plan, IEP, and/or 504 accomodations included but not solely limited to this modification and accomodation list.
- Restructure lesson using UDL principals (<u>http://www.cast.org/our-work/about-udl.html#.VXmoXcfD_UA</u>)
- Structure lessons around questions that are authentic, relate to students' interests, social/family background and knowledge of their community.
- Provide students with multiple choices for how they can represent their understandings (e.g. multisensory techniques-auditory/visual aids; pictures, illustrations, graphs, charts, data tables, multimedia, modeling).
- Provide opportunities for students to connect with people of similar backgrounds (e.g. conversations via digital tool such as SKYPE, experts from the community helping with a project, journal articles, and biographies).
- Provide multiple grouping opportunities for students to share their ideas and to encourage work among various backgrounds and cultures (e.g. multiple representation and multimodal experiences).
- Engage students with a variety of Science and Engineering practices to provide students with multiple entry points and multiple ways to demonstrate their understandings.
- Use project-based science learning to connect science with observable phenomena.
- Structure the learning around explaining or solving a social or community-based issue.
- Provide ELL students with multiple literacy strategies.
- Collaborate with after-school programs or clubs to extend learning opportunities.

NGSS Resources

(Click on the following to access the following resources.)

High School Physical Sciences, specifically HS.Forces and Interactions, HS.Energy, HS.Waves and Electromagnetic Radiation

Appendix F Science & Engineering Practices

Appendix G Crosscutting Concepts

Appendix I Engineering Design in NGSS

Appendix L Connections to CCCS - Mathematics

Appendix M Connections to CCCS - Literacy in Science and Technical Subjects.