Hillside Township School District

Science Curriculum

Grades 6-8

Curriculum Contributors:

Gurpreet Bhullar Lisa Binz Natasha Gayle Henry Eisenberg Karen Martone Kerry Ann McGaw Jessica Molesky Joe Pereira Ken Sticker

> **Supervisor** Lisa Corona

Director Dr. Christy Oliver Hawley

Superintendent of Schools Dr. Antoine Gayles

Board of Education Approved: August 22, 2016

Table of Contents

Section	Page
Mission Statement	3
Academic Overview	3
Affirmative Action Compliance Statement	3
NGSS and Honors Overview	4
6-8 Science Program Overview: Units by Grade Level	5
Science Kit Pacing Grades 6-8	5
Science Department Lesson Plan Template	6
Units and Pacing Charts	
Grade 6	8
Grade 7	35
Grade 8	<u>59</u>
Resources: NGSS New Jersey Technology Standards Resources	85

District Mission Statement

The mission of the Hillside Public Schools is to ensure that all students at all grade levels achieve the Next Generation Science Standards and make connections to real-world success. We are committed to strong parent-community school partnerships, providing a safe, engaging, and effective learning environment, and supporting a comprehensive system of academic and developmental support that meets the unique needs of each individual.

Academic Area Overview

The Hillside Township School District is committed to excellence. We believe that all children are entitled to an education that will equip them to become productive citizens of the twenty-first century. We believe that an education grounded in the fundamental principles of science will provide students with the skills and content necessary to become our future leaders.

A sound science education is grounded in the principles of inquiry and rigor. Children are actively engaged in learning as they model real-world scientific behaviors to construct knowledge. They have ample opportunities to manipulate materials in ways that are developmentally appropriate to their age. They work in an environment that encourages them to take risks, think critically, and make models, note patterns and anomalies in those patterns. Children are encouraged to ask questions, not just the "how" and the "what" of observed phenomena, but also the "why".

Our program provides teachers with cost-effective science materials that are aligned to state and national standards, incorporate instructional strategies that are research-based, and provides teachers with a deep understanding of science and the pedagogical underpinnings of science. Our teachers receive quality professional development through a partnership with nearby districts. Our K-8 kit based program encourages "hands-on science" and is endorsed by the National Science Foundation.

Equality and Equity in Curriculum

The Hillside Township School District ensures that the district's curriculum and instruction are aligned to the Next Generation Science Standards and addresses the elimination of discrimination and the achievement gap, as identified by underperforming school-level AYP reports for State assessment, by providing equity in educational programs and by providing opportunities for students to interact positively with others regardless of race, creed, color, national origin, ancestry, age, marital status, affectional or sexual orientation, gender, religion, disability or socioeconomic status.

N.J.A.C. 6A:7-1.7(b): Section 504, Rehabilitation Act of 1973; N.J.S.A. 10:5; Title IX, Education Amendments of 1972

Next Generation Science Standards

In 2014, NJ adopted the Next Generation Science Standards with the goal of ensuring our students graduate ready for college and career. The standards for science practice describe varieties of expertise that science educators at all levels should seek to develop in their students. These practices rest on important "processes and proficiencies" with longstanding importance in science education. The Science Framework emphasizes process standards of which include planning investigations, using models, asking questions and communicating information. Crosscutting concepts have value because they provide students with connections and intellectual tools that are related across the differing areas of disciplinary content and can enrich their application of practices and their understanding of core ideas. Throughout the year, students should continue to develop proficiency with the eight science practices. Crosscutting concepts can help students better understand core ideas in science and engineering. When students encounter new phenomena, whether in a science lab, field trip, or on their own, they need mental tools to help engage in and come to understand the phenomena from a scientific point of view. Familiarity with crosscutting concepts can provide that perspective. A next step might be to simplify the phenomenon by thinking of it as a system and modeling its components and how they interact. These preliminary studies may suggest explanations for the phenomena, which could be checked by predicting patterns that might emerge if the explanation is correct, and matching those predictions with those observed in the real world. More information regarding the Next Generation Science Standards can be found at: http://www.nextgenscience.org/

Honors Science Courses at WOK Middle School

All science department courses at WOK School prepare students with the knowledge and critical thinking skills necessary for study at the college High School level. The Honors Science courses are designed to support students seeking an additional challenge in their middle school coursework, leading to the pursuit of STEM career paths. These honors courses stress the intellectual role of the student as they grapple with key concepts of science in increased depth. Emphasis will be on the analysis and application of data to make sense of major scientific concepts and principles. Students will learn by designing experiments, performing independent research, and working with models of systems at the nanoscopic, microscopic, and macroscopic levels. To be successful in an Honors Science course, a student must be prepared to work both independently and cooperatively inside and outside of class. Students will also be required to apply more rigorous mathematical skills in Honors science, so it is recommended that students electing to take Honors Science courses have strong grades in their Math coursework. Students succeeding in Honors Science courses are prepared for success at the honors level the following year in the corresponding discipline.

• In this document, the Honors Level components are indicated in italicized purple text.

6-8 Science Program Overview: Units by Grade Level

	Life Science	Physical Science	Earth Science
6	Diversity of Life	Waves	Weather and Water
7	Populations and Ecosystems	Electromagnetic Force & Gravity Kinetic Energy	Planetary Science
8	Heredity and Adaptation & Human System Interactions	Chemical Interactions	Earth History

Science Kit Pacing Grades 6-8

Grade Level	First Kit	Second Kit	Third Kit	Fourth Kit
6	Weather and Water Begins: September Ends: December	Waves Begins: February Ends March	Diversity of Life Begins: March Ends: June	Variable and Designed (Added 2018)
7	Planetary Science Begins: September Ends: December	Electromagnetic Force Begins: January Ends: February	Gravity Kinetic Energy Begins: March Ends: April	Populations and Ecosystems Begins: April Ends: June

8	Chemical Interactions	Earth History	Heredity and Adaptation	Human System Interactions
	Begins: September	Begins: January	Begins: March	Begins: April
	Ends: January	Ends: March	Ends: April	Ends: June

Science Department Lesson Plan Template

Lesson Information

Lesson Name:	
Unit:	
Date:	

<u>Lesson Data</u>

1.	Essential Question:	
2.	NGSS Performance Expectation	Students will be able to
3.	Disciplinary Core Idea :	Students will know

4.	Practices:

Students will be able to

6.

5. Crosscutting Concepts:

Assessment:

Evidence of student learning:

Students will apply ...

7. Lesson Agenda:

Include in Lesson Outline: Anticipated timing DO NOW Activities and Investigations Discussion prompts Journal writing prompts Student uses of technology Safety precautions Materials

8. Homework:

Science

Grade 6

۲

UNIT: <u>Weather and Water</u> Grade 6

Grad	le (5
------	------	---

ENDURING UNDERSTANDINGS		ESSENTIAL QUESTIONS	
 ✓ The Earth can be separated into various spheres which interact dynamically. ✓ The Sun is the ultimate energy source for all of Earth's processes. ✓ Important molecules circulate through Earth's spheres. ✓ Climate is a long-term pattern of temperature and moisture conditions. 		 ✓ How do Earth's systems work? ✓ Where does energy go? ✓ Where does matter go? How are climate and weather related? 	
NGSS KNOWLEDGE Students will know:		SKILLS & PRACTICES Students will be able to:	Cross Cutting Concepts Students will apply:
MS-ESS2-4 MS-ESS2-5	Atmosphere	• Generate inquiry questions stimulated by the video and discussions.	Cause and effectSystems and system models

<u>MS-ESS3-2</u> <u>MS-PS1-4</u> <u>MS-ESS2-6</u>	 Weather is the condition of the Earth's atmosphere at a given time and place. These conditions include temperature, pressure, humidity, wind direction, and wind speed. Severe weather has the potential to cause death and destruction in the environment. The Earth is surrounded by an atmosphere composed of a mixture of nitrogen, oxygen, and trace gases that include water vapor. Weather occurs in the lowest layer (troposphere). The air in our atmosphere is matter; it has mass and occupies space. The air in our atmosphere has different physical and chemical composition at different elevations. Pressure exerted on a gas reduces its volume and increases its density. Wind is a large scale movement of air. Air tends to move from regions of high pressure to regions of low pressure. Air pressure is represented on a map by contour lines called isobars <u>Key Terms:</u> atmosphere, weather, temperature, pressure, humidity, wind direction, wind speed, matter, mass, air pressure, troposphere, nitrogen, oxygen, helium, carbon dioxide, water vapor, isobars 	 Use weather instruments to accurately measure temperature, atmospheric pressure, humidity, wind direction, and wind speed and use the media tools to track weather in another city Analyze data collected by weather balloons launched Design a procedure that will demonstrate that air has mass Model and compare the behavior of gasses under various pressure conditions Recognize the gasses prevalent in our atmosphere Model the vertical structure of the atmosphere using real-world data from active and passive remote-sensing tools (e.g., satellites, balloons, and/or ground-based sensors) Apply understanding of atmospheric conditions to authentic scenarios Investigate the effect of air pressure on the system and consider how density is affected by air pressure Locate high and low pressure airs on maps and predict where winds will blow and in what direction 	 Patterns Stability and change
<u>MS-ESS2-6</u> <u>MS-ESS1-1</u>	Energy and Matter	• Use a laboratory thermometer to take accurate temperature readings	Systems and system modelsCause and effect

 MS-PS3-4 causing the circulating movements of the atmosphere and oceans. Energy from the sun is transferred to air, land, and water through radiation. Different substances absorb heat at different rates (differential heating). Heat energy can move between objects or substances by conduction. This process allows heat energy to transfer from the land to the air. The density of an object or substance can be determined from its volume and mass. (d = m/v) Adding salt to water (as happens in a marine environment) will change its density. Sinking and floating can be predicted using forces that depend on the relative densities of the objects and materials. Less dense substances. Heat energy causes matter to expand and become less dense. By changing the density 	 Setup and collect and analyze the data from earth materials in the sun and in the shade Use evidence to create explanations about the differential heating of solids and liquids on the Earth by the Sun Design and conduct experiments to observe heat transfer by conduction through solids and liquids. Make claims about conduction in the environment based on evidence and reasoning. Relate the transfer of heat from oceans and land masses to the evolution of a hurricane Explain density as a ratio between a mass and its volume Use mass and volume values to calculate density Observe and make claims about the relative densities of liquids in a layered column Predict whether an object or substance will sink or float (layering above or below in the case of a liquid) in a liquid based on the relative densities of the materials Apply density concepts to salt 	 Scale, proportion and quantity Energy and matter Patterns
---	---	---

	 composition of water masses and energy from the sun or wind. Heat energy carried by ocean currents and transferred during interactions with land and atmosphere has a strong influence on climate around the world. The transfer of thermal energy by conduction, convection, and radiation can produce large-scale events such as those seen in weather. <u>Key Terms:</u> heat energy, radiation, differential heating, conduction, mass, volume, density, marine, sink, float, convection 	 models of convection currents in water and in air Explain how energy transfer drives the process of convection Apply the concept of convection to explain the circulation of water and air around the globe. Represent and explain, using sea surface temperature maps, how ocean currents impact the climate of coastal communities Apply concepts of density, radiation, conduction, and convection to authentic scenarios 	
MS-ESS2-5 MS-PS1-4 MS-ESS2-6 MS-PS3-4	 Air Pressure and Wind Air moves from areas of high pressure to areas of low pressure. Breezes blow in predictable ways determined by local patterns of differential heating from the Sun's radiation being absorbed by air, land and water that in turn causes differences in pressure and density. Pressure exerted on a gas reduces its volume and increases its density. Wind is a large scale movement of air. Air pressure is represented on a map by contour lines called isobars. Energy can move from one material to another by conduction. 	 Collect and interpret data to build an explanation of the relationship between pressure and density Investigate the effect of air pressure on the system and consider how density is affected by air pressure. Use a barometer to determine air pressure Model the creation of wind in the atmosphere, accounting for differential heating, energy transfer, convection, changes in density, changes in atmospheric pressure, and wind 	 Stability and change Cause and effect Systems and system models Patterns Energy and Matter

 Convectional cells and Earth's rotation determine prevailing winds on Earth. <u>Key Terms:</u> pressure, wind, breeze, differential heating, radiation, temperature, density, Coriolis effect 	 Explain how energy from the Sun is transformed or transferred in global wind circulation Illustrate global winds and surface currents through the creation of a world map of global winds and currents that explains the relationship between the two factors Compare data to their models and determine that convection cells and the Coriolis Effect are responsible for the wind patterns on Earth. Apply understanding of air pressure and wind to authentic scenarios
--	---

MS-ESS2-4 MS-PS1-4 MS-ESS2-6 MS-PS3-4	 Water Water exists in the atmosphere in the form of water vapor. The atmosphere can only hold a certain percentage of water vapor before it becomes full (saturated). Relative humidity is the amount of water vapor in the air expressed as a percentage of saturation. Dew point is the temperature at which the air is saturated with water vapor. Above this temperature, liquid water will evaporate to form water vapor. Below this temperature, water vapor will condense to form liquid 	 Design and conduct an experiment, collect and analyze data, and make and communicate arguments to support the concept that water vapor exists in the air Measure changes in temperature due to evaporation Determine dew point temperature at which no more water can evaporate because the air is saturated Explain relative humidity as the percentage of water vapor in the air compared to the amount of water vapor needed to saturate that air at a 	 Systems and system models Cause and effect Patterns Energy and Matter Scale. Proportion and quantity Stability and change
	 water vapor will condense to form liquid water droplets. Pressure and temperature are related. As pressure increases, temperature increases. As pressure decreases, temperature decreases. Air pressure drops as elevation increases, so a mass of air will cool as it ascends. This cooling of air encourages water vapor to condense to form clouds. If enough liquid water condenses, precipitation occurs Water also exists in liquid and solid forms around the Earth. Most of Earth's liquid water is salt water in the oceans. Fresh water is found in many locations, including lakes, rivers, and groundwater. Ice is located in glaciers. 	 vapor needed to saturate that air at a specific temperature Predict the evaporation and condensation of water using temperature, humidity, and dew point data Investigate the relationship between pressure and temperature, using 2L plastic bottles and thermometer strips Observe changes in temperature due to pressure change and build explanations of how pressure changes then affect the behavior of water vapor Use pressure to produce a cloud in a bottle. Use this model to build explanations of how clouds are formed in our atmosphere 	

 of these locations through the pevaporation, condensation, and There is not one set path for ear particle. It follows many difference over time. Ocean currents are caused primwinds. Convection of ocean was Coriolis Effect. A location's proximity to a large water generally results in less to variation and more precipitation <u>Key Terms:</u> water vapor, saturated humidity, dew point, evaporation, pressure, temperature, precipitation 	water it pathsmultiple pathways in the water cycle• Apply understandings of evaporation, condensation, and precipitation to explain the workings of the water cycle. Explain how energy from the Sun drives the processes within the cycle• body of nperature• Apply understanding of water behaviors to authentic scenarios
MS-ESS3-5 MS-ESS2-4 MS-ESS2-6Weather and Climate MS-ESS2-6 (air masses) that are uniform in and humidity. These air masses separated by boundaries called The difference between temper humidity of the two air masses cycling of heat and water in an atmosphere) causes weather conchange at the location of the firm moves across the Earth.	 behavior Compare and classify different air masses Model frontal boundaries to explain what happens when two air masses of different densities meet, relating it to their differences in density Determine the origin of local weather by exploring national and System and system models Energy and Matter Stability and change

 Weather is the condition of the atmosphere at a specific time and location; climate is the average weather in a region over a long period of time. When greenhouse gas concentrations in the atmosphere increase, the global temperature rises. Humans impact the atmosphere with chemical pollutants, including greenhouse gases and particulates that have been linked to global warming. Global warming may have an effect on Earth's weather and climate. Key Terms: air masses, front, climate, greenhouse gas, global warming 	 Explain the interrelationships between daily temperature, air pressure, and humidity data Explain the mechanisms that cause varying daily temperature ranges in a coastal community and in a community located in the interior of the country Explain how a global temperature increase could affect the water cycle and Earth's climate Use computer simulations to explore the effects of carbon dioxide and other greenhouse gases in the atmosphere. Analyze climate graphs for four different geographical locations and look for changes over a 50 year period. Evaluate the impact of daily life choices on Earth's atmosphere and the 	
	 choices on Earth's atmosphere and the consequences of a changing atmosphere Read summaries of news stories from the past decade, looking for evidence of climate change and whether that change is caused by humans Apply understanding of weather and climate to authentic scenarios 	

Weather and Water Unit Grade 6

TIME FRAME	ΤΟΡΙΟ	PERFORMANCE TASKS ACTIVITIES/PROJECTS ASSESSMENTS	RESOURCES/INTERDISCIPLINARY CONNECTIONS
September 14 Periods	Atmosphere	Investigation 1: What is Weather? Part 1: Intro the Weather Part 2: Local Weather Contribute to local weather data via FOSSweb Share digital images with FOSSweb Explore Weather Topics, weather lore, and careers in meteorology Assessment: Quick Write, survey Investigation 2: Where's the Air? Part 1: The Air Around Us Part 2: Earth's Atmosphere Draw atmosphere posters Learn about atmospheric research from space Assessment: Scientific Practice, Notebook entry, Inv. 1-2 I-Check Investigation 3: Air Pressure and Wind Part 1: Air Pressure Inquiry Part 2: Pressure Maps Poem on wind Build a wind sock Explain drinking straw Make airplane observations Reduce pressure in a bottle Assessment: Scientific Practice, Response sheet, Inv. 3 I-Check	Fossweb Resources: Climate Blog Weather Data Grapher Gas in a Syringe Elevator to Space Pressure Indicator Setup Barometer in a Bottle Weather Balloon Simulation Additional Resources Accuweather Air Pressure and Altitude Interactive BrainPOP: Earth's Atmosphere BrainPOP: Weather National Hurricane Weather Center Song: Fresh Air PhET: Gas properties simulation http://www.weather.com/ http://www.wunderground.com/

October 15 Periods	Energy and Matter	Investigation 4: Convection Part 1: Density of Fluids Part 2: Convection in Water Part 3: Convection in Air <i>Practicing calculating density</i> Assessment: Scientific Practice, Response sheet, Notebook entry, Inv. 4 I-Check Investigation 5: Heat Transfer Part 1: Latitude Part 2: Solar Angle Part 3: Heating Earth <i>Simulate heat capacity</i> <i>Compare solar energy at two locations</i> <i>Share digital images with the FOSS community</i> Assessment: Scientific Practice, Notebook entry, Inv. 5 I-Check	Fossweb Resources: Fluid Convection Particles in Solids, Liquids and Gases Convection Chamber Preparation Convection Chamber in Action Convection in Animation Longitude and Latitude Seasons Radiation Animation Additional Resources SMART Notebook lesson: Conduction SMART Notebook lesson: Convection
November 7 Periods	Air Pressure and Wind	Investigation 6: Air Flow Part 1: Conduction Part 2: Local Winds Part 3: Global Winds Create a 3-D model of wind Test conduction through different materials Research other atmospheres Determine prevailing winds Assessment: Notebook entry, Inv. 6 I-Check	Fossweb Resources: Energy Transfer by Collision Conduction Animation Particles in Solids, Liquids and Gases Conduction through Materials Thermometer Local Wind Coriolis on Jupiter Additional Resources BrainPOP: Wind

November 14 Periods	Water	Investigation 7: Water in the Air Part 1: Is Water Really There? Part 2: Phase Change and Energy Transfer Part 3: Clouds and Precipitation <i>Investigation transpiration</i> <i>Review the pressure / temp relationship</i> <i>Explore evaporation</i> <i>Share digital resources with FOSS community</i> <i>Vernier Lab: Relative Humidity</i> Assessment: Scientific Practices, Notebook entry, Response Sheet, Inv. 7 I-Check Investigation 9: The Water Planet Part 1: Water Cycle Simulation Part 2: Ocean Currents Part 3: Ocean Climate <i>Catch an inflatable globe</i> <i>Tackle additional climate factors</i> <i>Guest Speaker if available</i> Assessment: Quick write, Scientific Practices, Notebook entry, Response Sheet	Fossweb Resources: Cloud in a Bottle Water Cycle Additional Resources BrainPOP: Humidity BrainPOP: Water Cycle Harcourt School: Evaporation and Condensation Harcourt School: The Water Cycle
December 6 Periods	Weather and Climate	Investigation 8: Meteorology Part 1: Weather Balloons Part 2: Weather Maps Observe a weather balloon launch Watch middle school weather balloon video Collect local radiosonde data Use weather satellite data Share digital images with the FOSS community	Fossweb Resources: Weather Balloon Video Weather Balloon Simulation Earth's Climate Over Time C02 in the Ice Core Climate Blog Greenhouse Gas Simulator Human Sources Water Cycle

Assessment: Quick write, Scientific Practices, Notebook entry, Investigation 8-9 I-Check	
	Additional Resources
Investigation 10: Climate Over Time	BrainPOP: Climate Types
Part 1: Climate Change	BrainPOP: Weather
Part 2: The Role of Carbon Dioxide	Discovery Education: Weather Patterns and
Part 3: Climate in the News	Climate
Part 4: Identify Key Ideas	PhET: Greenhouse effect simulation
Explore climate regions	SMART Notebook lesson: Weather and Climate
Explore climate change solutions	SMART Notebook Lesson: Weather Forecasting
Study local climate	Song: Stormin'
Reflect on remaining questions	
Vernier Lab: The Greenhouse Effect	
Assessment: Scientific Practices and Posttest	

		T: Waves Grade 6	
EN	DURING UNDERSTANDINGS	ESSENTIAL Q	UESTIONS
 Waves have fundamental properties such as wavelength, frequency and amplitude. The path of light energy can be predicted based on its absorption, reflection, and refraction. Planning, research, modeling and testing can help engineers develop successful designs. Modern technology encodes information to improve transmission quality, reliability and speed. 		 ✓ What defines a wave? ✓ Where does light energy go? ✓ How are engineering challenges solved? ✓ How are sound and images sent through radio waves? 	
NGSS	KNOWLEDGE Students will know:	SKILLS Students will be able to:	CROSS CUTTING CONCEPTS Students will apply:
<u>MS-PS4-1</u>	 Waves A wave is a back-and-forth pattern of motion that transfers energy. Key features of waves are crests, troughs, and nodes. Waves can be described in terms of wavelength, frequency, and amplitude. 	 Monitor their heart rate under different circumstances to think about frequency. Create waves using metal springs. Use these simple waves to explore the fundamental properties 	 Patterns Systems and system models Energy and matter

	 If you know the frequency and wavelength, you can calculate the velocity of a wave <u>Key Terms:</u> Wave, crest, troughs, nodes, wavelength, frequency, amplitude, velocity 	of waves: wavelength, frequency, and amplitude.	
MS-PS4-1 MS-PS4-2 MS-ETS1-1 MS-ETS1-2 MS-ETS1-3 MS-ETS1-4	 Wave Energy A mechanical wave travels through a medium. The amplitude, frequency, and wavelength of a wave are related to the energy transferred by the wave The frequency and wavelength of a wave are related. Planning, research, modeling, and testing can help engineers develop successful designs. A sound wave is a mechanical wave, so it requires a medium to travel. Waves interacting with media can be absorbed or reflected. Key Terms: Mechanical wave, absorb, reflected, sound wave 	 Compare energy in waves with different properties. Look at an engineering failure and consider the work engineers must do to achieve a successful design. Develop a chamber that can effectively block sound waves. 	 Patterns Cause and effect Scale, proportion and quantity Systems and system models Energy and matter Structure and function
<u>MS-PS4-2</u>	 Light Waves A wave model can be used to explain the properties of light. Light travels in straight lines, except at the interface between transparent media where refraction occurs. 	 Explore properties of light waves. Use mirrors to explore reflection. Use spectroscopes to analyze spectra of visible light and 	 Patterns Cause and effect Scale, proportion and quantity System and system models Energy and matter Structure and function

	 The angle of incidence equals the angle of reflection. The electromagnetic spectrum extends beyond visible light. Different wavelengths of visible light are perceived as different colors. When light shines on an object, the light is reflected, absorbed, or transmitted through the object. Key Terms: refraction, transparent medium, rainbow, dispersion, absorbed, reflected, transmitted, electromagnetic spectrum 	 learn more about the electromagnetic spectrum. Use filters to change the spectrum of a light source and to learn about color. Determine how refraction changes the path of light rays as they travel between media. 	
<u>MS-PS4-2</u>	 Communication Waves Light can be transmitted long distances through optical fibers. Complex information like words, sound, and images must be encoded to be sent as light. Digital waves can have the same information as analog waves; digital waves can be improved by using smaller increments. Many modern communication devices use digitized signals (sent as waves) as a reliable way to encode and transmit information. Modern technology encodes information to improve transmission quality, reliability, and speed. Key Terms: optical fiber, digital waves, analog waves 	 Investigate how information can be encoded and sent as digital waves to transfer large amounts of information efficiently over large distances. Test properties of fiber-optic cables to develop an understanding of how total internal reflection allows data transfer by light. Investigate how data is encoded and sent as modulated waves to a recipient for demodulation. Create digital waves and develop an understanding of how digital waves enable modern communications. 	 Patterns Scale, proportion and quantity Structure and function

	<u>Unit: Waves</u> Grade 6			
TIME FRAME	ΤΟΡΙϹ	PERFORMANCE TASKS ACTIVITIES/PROJECTS ASSESSMENTS	RESOURCES/INTERDISCIPLINARY CONNECTIONS	
January 6 periods	Waves	Investigation 1: Make Waves Part 1: Pulse Rate Part 2 Spring Waves <i>Teacher-Led/Guided Activities</i> <i>Student project</i> Assessment : Entry-level survey	Fossweb Resources: Standing Wave-Video Metronome Additional Resources Properties of Waves: Making Waves Visible	
February 9 <i>periods</i>	Wave Energy	Investigation 2: Wave Energy Part 1: Energy in Waves Part 2: Bridge Collapse Part 3: Energy in Sound Waves <i>Teacher-Led/Guided Activities</i> <i>Student project using Google Slides</i> Assessment : Investigations 1-2 I-Check	Fossweb Resources: Oscilloscope Big Waves Tacoma Narrows Bridge Collapse 1 Tacoma Narrows Bridge Collapse 2 Soundproof Engineering	

			Additional Resources Catching the Wave!
February 9 Periods	Light Waves	Investigation 3: Light Waves Part 1: Mirrors Part 2: Spectra Part 3: Color Part 4: Refraction <i>Teacher-Led/Guided Activities</i> <i>Student Modeling Project using Google Slides</i> Assessment : Investigation 3 I-Check	Fossweb Resources:RefractionAdditional ResourcesHarcourt School: The Electromagnetic SpectrumPhET: Color Vision SimulationSong: Roy G BivThe Visible SpectrumMirrors, Color and LightHow Light TravelsHow We See ThingsSMART Notebook Lesson: Properties of LightBrainPOP: LightBrainPOP: Refraction and DiffractionMirrors, Color and LightPhET: Bending Light SimulationReflection and RefractionRefraction AnimationWhat is a Rainbow?
March 8 Periods	Communicatio n Waves	Investigation 4: Communication Waves Part 1: Optical Fibers Part 2: Sending Sound Part 3: Sending Images <i>Teacher-Led/Guided Activities</i> <i>Student Project</i>	Fossweb Resources: Digitized Images Fiber Optics Additional Resources Sound Waves vs. Light Waves "Un-notes" (2 days)

Assessment: Investigation 4 I-Check

Unit _Diversity of Life Grade 6___

ENDURING UNDERSTANDINGS	ESSENTIAL QUESTIONS
 ✓ All living organisms have specific characteristics in common. ✓ All life is classified among the six major kingdoms. ✓ As a multi-cellular organism grows from a single cell to an adult, cells divide and differentiate. 	 ✓ How do you know if something is a living thing? ✓ How do organisms grow and develop?

NJCCCS	KNOWLEDGE Students will know:	SKILLS Students will be able to:	CROSSCUTTING CONCEPTS Students will apply:
<u>MS-LS1-1</u>	 Life Any free-living thing is an organism. All living organisms share seven common traits: they grow, consume nutrients, exchange gases, respond to stimuli, reproduce, need water, eliminate waste, and are composed of cells. Key Terms: living, non-living, organism, grow, nutrient, gas, stimuli, reproduction, waste, dormant, dead 	 Develop and apply an operational definition of "living" Generate examples and explanations of each of the common traits for living organisms Categorize pictures of objects and organisms into living and nonliving groups Use evidence and criteria to make claims and arguments about whether a novel object is a living organism Apply the characteristics of life to authentic scenarios 	Scale, Proportion and quantity
<u>MS-LS1-1</u> <u>MS-LS1-2</u> <u>MS-LS3-2</u>	 Cells The cell is the basic unit of life. Most cells are too small to see with the naked eye. Microscopes are used to study living things too small for the naked eye to see. The eyepiece and objective lens combine to magnify the image and produce an image that is reversed and inverted. 	 Continue to modify and apply an operational definition of "living" Use a microscope proficiently to perform observations at appropriate magnifications Draw scale representations of images seen in a microscope to estimate size accurately 	 Scale. Proportion and quantity System and system models

 Individual cells have the same needs and perform the same functions as more complex organisms. Like we have organs, individual cells have organelles with specific functions. Examples: Cell membrane Cell wall Nucleus Chloroplast Ribosome Mitochondria Cytoplasm A major subdivision in cells is whether they have a nucleus (eukaryote) or not (prokaryote). Bacteria and Eubacteria are prokaryotic cells. Most other life forms are made of one or more eukaryotic cells. Multicellular organisms have specialized cells that work together in tissues, which work together in organs, which work together in organ systems, which work together to meet the needs of the living organism in its environment. Bacteria, fungi, and archaea demonstrate all the characteristics of life. Life is classified into three different domains (Archaea, Bacteria, Eukaryote), depending upon cellular and molecular characteristics Key Terms: microorganism, cell, paramecium, organelle, membrane, complex organism, cell wall	 Observe single-celled microorganisms and make inferences about relationships between structure and function Generate evidence to support the argument that paramecia are organisms Differentiate between single celled and multicellular organisms Compare structure and function of cells from different organisms Identify major organelles in a diagram of eukaryotic cell and relate the function of each to the needs of the living cell Relate the structure and function of cells, tissues, organs, systems, and organisms Model the interdependence of the human body's major systems in regulating its internal environment Look for evidence that bacteria are living organisms and find out more about the role bacteria play on Earth. Apply understanding of cells to authentic scenarios 	
--	--	--

	eukaryotic, prokaryotic, nucleus, chloroplast, ribosome, mitochondria, cytoplasm		
<u>MS-LS1-3</u> <u>MS-LS1-6</u> <u>MS-LS1-7</u>	 Transpiration Water is essential to living things. Plants use a vascular tissue called xylem to transport water from the roots to the rest of the plant. Water continually leaves the plant (transpiration) through the stomata on the underside of leaves in the form of water vapor. Guard cells work to control these opening and regulate the amount of water leaving through the stomata. Water in the plant is used with carbon dioxide during photosynthesis to make food (sugar). Cells are the building blocks of tissues, which are the building blocks of organs, which are the building blocks of organ systems, which are the building blocks of multicellular organisms Key Terms: transpiration, vascular, xylem, stomata, condensation, water cycle, elodea, guard cell, stomata, photosynthesis 	 Continue to modify and apply an operational definition of "living" Design an experiment to determine what happens to water in a celery stalk Collect and analyze data to develop evidence for an explanation for how water enters a plant's roots and flows through the plant during transpiration Relate transpiration to the environmental water cycle Explain the importance of water in the plant as an ingredient for photosynthesis to store light energy in sugars Apply understanding of transpiration to authentic scenarios 	 Scale. Proportion and quantity System and system models Energy and matter
<u>MS-LS1-3</u> <u>MS-LS1-4</u> <u>MS-LS1-5</u> <u>MS-LS3-2</u>	 Plant Reproduction and Growth Growth is essential to living things. 	 Continue to modify and apply an operational definition of "living" Dissect seeds to discover their structures Relate seed structures to functions 	 Cause and Effect System and system models

	 Flowering plants have characteristics that attract pollinators to ensure successful pollination and reproduction. Pollinators are attracted to flowers that meet their needs. Key Terms: reproduction, sexual reproduction, pollen, anthers, eggs, ovules, embryo, seed, variation, inheritance, acquired_dormant, embryo, dissection, germination, dicot, monocot, cell division, zone of elongation, zone of maturation 	 Examine seeds to infer dispersal mechanisms and compare the effectiveness of each in various scenarios Predict the long-term effect of interference with normal patterns of reproduction Explain how knowledge of inherited variations within and between generations can be applied to farming and animal breeding Distinguish between inherited and acquired characteristics Apply understand of reproduction and inheritance to authentic scenarios 	
<u>MS-LS1-3</u>	 Insect Biodiversity The structures and behaviors of an organism have functions that enhance the organism's chances to survive and reproduce in its habitat. Insects have open circulatory systems that transport substances to and away from their cells. Biodiversity is the variety of life that exists in a particular habitat or ecosystem. Measuring biodiversity includes measuring both the variety of organisms and the number of organisms in a habitat or ecosystem. Scientific debate regarding whether viruses are living organisms is ongoing. 	 Students observe and record observations of the Madagascar Hissing cockroaches Use online activities to compare the insect circulatory system to the plant vascular system and the human Cardiovascular (circulatory) System. Students explore their own locale to collect plants and animals and discover the unexpected diversity of life that exists. Explore viruses in order to determine 	• System and system models

Key Terms: Madagascar hissing cockroach, insect,	whether viruses are living	
habitat, circulatory system, rhinovirus	organisms.	

Unit Diversity of Life Grade 6

TIME FRAME	ΤΟΡΙϹ	PERFORMANCE TASKS ACTIVITIES/PROJECTS ASSESSMENTS	RESOURCES/INTERDISCIPLINARY CONNECTIONS
March 4 Periods	Life	Investigation 1: What is Life? Part 1: Living or Non-Living? Part 2: Is anything alive in here? Search for living/nonliving things outdoors Modify the environment Research extreme environments Assessment : Survey, quick write, Science and engineering practices, Science notebook entry	Fossweb Resources: Camphor Crystals Additional Resources Uncovering Student Ideas in Science (USIS) Vol. 1, "Is It Living?" pg. 123
April 20 Periods	Cells	Investigation 2: The Microscope Part 1: Meet the Microscope Part 2: Field of View Part 3: Microscopic Life Research early microscope and inventors Research modern microscopes Make a water drop microscope View other objects through the microscope Assessment : Science notebook entry, response sheet, Science and engineering practices Investigation 3: The Cell	Fossweb Resources:Lab Techniques : Moving the MicroscopeLab Techniques: Making a Wet MountVirtual MicroscopeMicroscope MeasurementsLab Techniques: Making a Brine Shrimp SlideDatabase: Brine Shrimp EatingDatabase: Brine ShrimpDatabase: Elodea Cytoplasmic StreamingPlant CellElodea CellsLab Techniques: Preparing a Paramecia Wet-Mount Slide

	Part 1: Discovering Cells	Lab Technique: Using Cotton to Slow Paramecia
	Part 2: Paramecia	Database: Paramecium
	Part 3: Micro-worlds	Protist Cell
	Part 4: Human Cheek Tissue	Database: Microorganism Collection
	Look at other protists	Lab Technique: Making a Human Cheek Tissue Slide
	Check soil for life	Database: Human Cheek Cells
	Feed paramecia	Animal Cell
	Model Paramecium feeding	Lab Techniques: Preparing an Agar Plate
	Assessment : Response sheet, Science and engineering	Lab Technique: Inoculating an Agar Plate
	practices, Investigation 1-3 I Check	Levels of Complexity Card Sort
		The Scale of the Universe
	Investigation 4: Domains	Database: Yogurt Bacteria
	Part 1: Comparing Living Things	Bacteria Cell
	Part 2: Bacteria	A Million Dollars
	Part 3:Fungi	Exponential Bacteria
	Part 4: Archaea	Fungal Cell
	Make a wanted poster	Funky Fungi Freak Show
	Research taste	Itsy Bitsy Thingy Locator
	Research interesting Fungi	Archaean Cell
	Research food and microorganisms	
	Assessment : Response sheet, Science and engineering	Additional Resources
	practices, quick write, science notebook entry,	BrainPOP: Cells
	Investigation 4 I-Check	BrainPOP: Microscopes
		BrainPOP: Protists
		BrainPOP: Protozoa
		Harcourt School: Cell Inspector
		Harcourt School: Comparing Plant and Animal Cells
		Harcourt School: Mitosis
		Harcourt School: Protists
		SMART Notebook lesson: Cells
		Song: <u>Cells</u>
1		

			USIS Vol. 1, "Functions of Living Things" pg. 147 USIS Vol. 1, "Is It Made of Cells?" Pg. 131 USIS Vol. 3, "Cells and Size" pg. 117
April 6 Periods	Transpiration	Investigation 5: Plants the Vascular System Part 1: What Happened to the Water? Part 2: Looking at Plant Structures Part 3: Transpiration and Photosynthesis <i>Calculate total transpiration</i> <i>Investigate celery further</i> <i>Look for stomata on elodea leaf</i> Assessment : Science notebook entry, response sheet, Science and engineering practices, quick write, Investigation 5 I-Check	Fossweb Resources: Database: Stomata Collection Database: Stem Collection Vascular System Additional Resources Harcourt School: Vascular Plants
May 8 Periods	Plant Reproductio n and Growth	Investigation 6: Plant Reproduction and Growth Part 1: Lima Bean Dissection Part 2: Environmental and Genetic Factors Part 3: Flowering Plant Reproduction Part 4: Flowers and Pollinators Look for flowers Look for pollinators Share digital images with the FOSS community Research honeybees Plant bee-friendly flowers Guest speaker if available Think further about seeds Plant collected seeds	Fossweb Resources: Database: Seed Collection Lab Technique: Preparing the Flower Dissection Mount Database: Flower Collection Database: Pollinator Collection Pollinators Game Additional Resources BrainPOP: Seed Plants USIS Vol.2, "Needs of Seeds" pg. 101 USIS Vol.2, "Plants in the Dark and Light" pg. 107 BrainPOP: Pollination Harcourt School: Inside a Flower

		Assessment : Science notebook entry, response sheet, Science and engineering practices, science notebook entry, Investigation 6 I-Check	
May 4 Periods	Insects	Investigation 7: Insects Part 1: Structure, Function, and Behavior Part 2: Insect Systems Investigate insect lifestyles Research endangered insect species Talk with an entomologist Explore bizarre insect behaviors Assessment: Science and engineering practices, Science notebook entry, group response	Fossweb Resources: Database: Insect Collection Levels of Complexity Additional Resources BrainPOP: Insects
May June 4 blocks	Diversity	Investigation 8: Diversity of Life Part 1: Bioblitz Part 2: What is Life? Conduct a neighborhood bioblitz Look into an official bioblitz Try some OBIS activities Watch some bioblitz videos from other sites Do the bioblitz bird dance Research viral diseases Assessment: Science and engineering practices, science notebook entry, posttest	Fossweb Resources: <u>Flu Attack</u> <u>Viruses on Attack</u> <u>Additional Resources</u> <u>BrainPOP: Bacteria</u> <u>BrainPOP: Six Kingdoms</u> <u>Song: Jennifer's a Mammal</u> <u>Song: Mammal</u> <u>The Six Kingdoms</u>

Science

Grade 7

	UNI	T: Planetary Science Grade 7	
E	NDURING UNDERSTANDINGS	ESSENTIAL QU	ESTIONS
Earth, and M interaction a ✓ Climate is d	predictable patterns of movements in the Sun, Aoon system occur because of gravitational and energy from the Sun. etermined by the Earth's rotation and revolution rocesses on the Earth.	✓ What patterns can we observe and predict because of the Earth, Sun, Moon?	
NGSS	KNOWLEDGE Students will know:	SKILLS Students will be able to:	CROSS CUTTING CONCEPTS Students will apply:
<u>MS-ESS1-1</u>	Point of View on Earth	• Use web-based images to observe and describe where they are as their point of view moves away from Earth's surface in powers of ten.	 Scale, Proportion and Quantity Patterns

 Line of sight is the st taken by light from a Objects appear to sin 	oint of view, altitude, rence		
, ,	 ink when they move I slip below the horizon Earth is illuminated rk (night). r-clockwise every 24 and night. The side of the s the sun experiences day 	 Generate evidence that Earth is a sphere Develop a rational argument for a spherical Earth. Use models to relate Earth's motions to the Sun Communicate how to determine the direction of Earth's rotation Apply understanding of the Earth/Sun relationship to authentic scenarios 	 Patterns System and system models Cause and effect

MS-ESS1-1	 <u>Key Terms:</u> horizon, line of sight, axis, rotation, day, night Seasons Because the Earth rotates on an axis that is tilted relative to the plane of the Earth's 	 Use models to relate Earth's motions to the Sun Use evidence of global variations in day length, temperature/seasons, and the amount of solar radiation striking 	 Scale, proportion and quantity System and system models Patterns Cause and effect
	 yearly revolution around the sun, sunlight falls more intensely on different parts of the Earth during the year; the difference in heating of the Earth's surface produces the planet's seasons and weather patterns. The lower the angle at which light strikes a surface, the lower the density of the light energy. Beam spreading affects the intensity of solar radiation on Earth's surface The duration of daylight at a position on Earth's surface varies as Earth revolves around the Sun, due to the tilt of Earth's axis. 	 Earth's surface to create models that explain these phenomena Create and interpret diagrams to predict and explain seasonal temperature changes Read an account of day length around the planet and graph the duration of daylight throughout the year Apply understanding of the Earth/Sun relationship to authentic scenarios 	
	Key Terms: tilt, axis, rotation, revolution, seasons, direct sunlight, indirect sunlight		
MS-ESS1-1 MS-ESS1-3 MS-ESS3-2	Moon Phases and Features	• Generate a set of questions about the Moon, organize them into categories,	 Scale, proportion and quantity System and system models Patterns

	 The Moon has surface features that can be identified in telescope images: craters, Maria, and mountains. The Moon revolves around Earth and rotates on its axis in about 28 days. The Moon's orbit changes what part of the moon is lighted by the sun and how much of that part can be seen from Earth. We can predict this pattern and call this the phases of the Moon. The Moon goes through phases: "new" to "full" and back to "new" in a 4-week cycle. Craters of various sizes and types result when meteoroids of various sizes impact the surface of planets and satellites. The Moon formed after a massive collision between the forming Earth and a planetesimal about the size of Mars. The solar system includes the Sun; eight planets and their satellites; and a host of smaller objects, including dwarf planets, asteroids, comets, Kuiper Belt objects, and Oort cloud matter. 	 and use them to guide their continued inquiry. Explore the Earth/Moon relationship by creating a scaled model of the system Analyze moon-phase data to construct models that explain how the relative positions and motions of the Sun, Earth, and Moon cause these phenomena Explain the roles of rotation and revolution of the Earth and the Moon in the presentation of phases Predict relative positions of the Sun, Earth, and Moon when shown a representation of a Moon phase Design experiments to investigate different variables and determine if impact events could be responsible for the extensive cratering on the Moon's surface. Generate drawings depicting all the objects in the solar system. Choose and defend theories related to Moon's origin Apply understanding of the Earth/Moon relationship to authentic scenarios 	• Cause and effect
MS-ESS1-2 MS-ESS1-3	Cosmo Exploration	• Create model of the inner solar system	Scale, proportion and quantitySystem and system models

 MS-ESS2-2 MS-PS4-1 Liquid water is essential for life as we know it. The temperature on a planet depends on two major variables: distance from the Sun and the nature of the planet's mediating atmosphere. Images can convey information about the presence and history of liquid water on planetary surfaces. A spectroscope analyzes the wavelengths of light (spectrum) coming from a light source. Scientists use spectral data from distant moons, planets, and stars to determine their temperature, composition, motion, and more Scientific missions provide data about the composition and environmental conditions on the planets, moons, and other bodies in the solar system. Planetary-system objects move in measurable and predictable patterns. A transit occurs when a planet passes between a star and an observer, causing a dip in the intensity of light from the star. The magnitude and duration of the dip in light intensity during a transit reveals information about the planet. Location can be described in relation to a frame of reference 	 Study satellite images of typical water-related landforms on Earth and space. Use a spectroscope to observe the radiant spectra of a number of light sources, including the Sun, fluorescent lamps, and incandescent lamps Use an orrery and light sensor, they generate transit graphs and analyze them to draw conclusions about unknown planets Review what they have learned in the course and restate their cosmic address 	 Patterns Cause and effect
---	--	--

puil, muss, usualle, proportion		Key Terms: spectroscope Gravity, gravitational pull, mass, distance, proportion		
---------------------------------	--	---	--	--

Planetary Science Unit
Grade 7

TIME FRAME	ΤΟΡΙϹ	PERFORMANCE TASKS ACTIVITIES/PROJECTS ASSESSMENTS	RESOURCES/INTERDISCIPLINARY CONNECTIONS
---------------	-------	---	--

September 3 periods	Point of View on Earth	Investigation 1: Where am I Part 1: School to Space Part 2: Moon Watch Strengthen vocabulary Power of Ten Video Apply Math to a map Compare photos to maps Examine maps in everyday use Explore images on the internet Assessment: Survey, response sheet, science practices	Fossweb Resources: <u>White house views</u> Additional Resources <u>Google Earth</u>
September 4 periods	Day and Night	Investigation 2: A Round Spinning Earth Part 1: Sailing Ships Part 2: Earth/Sun Relationship Round Earth/Flat Earth Recreate Eratosthenes's discovery Prove Earth is round Share digital images with the Foss community Assessment: Response sheet, Scientific practices, quick write, investigations1-2 I-check	Fossweb Resources: <u>Astra Blog</u> <u>Latitude and Longitude</u> <u>Earth Models</u> <u>Round Earth /Flat Earth</u> <u>Libertad</u> <u>Day and Night Simulation</u> <u>Additional Resources</u> <u>Harcourt School: Shadows Throughout the Day</u>
October 7 periods	Seasons	Investigation 3: Seasons Part 1: Summer Heat Part 2: Day Length Research and Modeling of Seasons Reason for the Seasons Web quest Calculate local noon Research Time Zones Locate East- West	Fossweb Resources: <u>Seasons</u> <u>Latitude and Longitude</u> <u>Additional Resources</u> <u>BrainPOP: Seasons</u> <u>Vernier Lab: What Causes the Seasons?</u>

		Measure beam spreading Compare cities Change Earth's tilt Investigate day length and sunset Investigate seasons in the Southern Hemisphere Assessment: Response sheet, quick write, Investigations1-3 I-check	
October 16 periods	Moon Phases and Features	Moon Investigation 4: Moon Study Part 1: A Close Look at the Moon Part 2: How Big/ How Far? Share digital images with FOSS Community Calculate travel time Design additional models Explore the Moon online Assessment: Scientific practices Investigation 5: Phases of the Moon Part 1: Observed Patterns Part 2: Moon- Phase Models Part 3: Moon Phase Simulation Investigate moon rotation Assessment: Response sheet, Scientific practices, quick write, Investigations 4-5 I-check Investigation 6: Craters Part 1: Moon Craters Part 2: Target Earth Part 3: Moon Phase Simulation Scale craters to a local map View "Earth Craters" View NASA crater experiments Assessment: Scientific practices, Investigations 6 I-Check	Fossweb Resources:Rona/Moon AnimationMoon OrientationLunar CalendarDay/NightMoon PuzzlePhases of the MoonCrater formation on the MoonModel CratersCrater formation on the moonSpace UnitsCosmos card sortSolar system origin card sortOrigin of the moonTidesSpace missionsJupiter's atmosphereSearch for waterSolar SystemProperties of LightComparing SpectraSpace MissionsAstro Blog

	Investigation 7: Beyond the Moon	Moons of Jupiter Collection
	Part 1: What's Out There	Exoplanet Transit Hunt
	Part 2: Origins	Orrery Video 1
	Simulate solar system formation	Orrery Video 2
	Assessment: Quick draw	Venus Transit
	Investigation 8: The Solar System	
	Part 1: Where are the Planets	For All Mankind: DVD
	Part 2: Comparing Temperature and Atmosphere	Asteroids: Deadly impact
	Part 3: Where is the Water?	Hubble's Amazing Universe DVD
	Construct another model of the solar system	
	Explore planets with Hands -On Universe	
	Assessment: Scientific practices, science notebook entry,	Additional Resources
	Investigations 7-8 I-Check	BrainPOP: Moon
	Investigation 9: Space Exploration	SMART Notebook lesson: Phases of the Moon
	Part 1: Light Spectra	SMART Notebook lesson:
	Part 2: Exploration of the Solar Systems	BrainPOP: Gravity
	Research NASA on the internet	Harcourt School: How Planets Move in Orbits
	Learn more about the electromagnetic spectrum	Harcourt School: The Gravity of the Situation
	Review human space exploration with a time line	PhET: Gravity and Orbits Simulation
	Assessment: Scientific practices, Investigations 9 I-Check	Song: G-R-A-V-I-T-Y
		Your Weight on Other Worlds
	Investigation 10: Orbits and New Worlds	STAR-LAB Lessons (If available)
	Part 1: Moons of Jupiter	
	Part 2: Looking for Planets	
	Part 3: What is our Cosmic Address	
	Study actual transit curves	
	Assessment: Science notebook entry, Scientific practices,	
	Posttest	
1		

	UNIT: F	Clectromagnetic Force Grade 7	
	ENDURING UNDERSTANDINGS	ESSENTIAL QU	JESTIONS
 A force is a push or pull Friction is a force that acts to oppose a force acting to put a mass in motion 		 ✓ What makes things move? ✓ How does friction affect the force needed to move an object? ✓ How do multiple forces affect motion? 	
NGSS	KNOWLEDGE Students will know:	SKILLS Students will be able to:	CROSS CUTTING CONCEPTS Students will apply:
<u>MS-PS2-2</u>	 Forces Forces are a push or a pull; two objects don't necessarily need to be touching to push or pull on one another. The metric unit for force is newton Friction is a force that acts to oppose a force acting to put a mass in motion Net force is the sum of the forces acting on a mass. 	 Plan and carry out investigations to measure the force requires to push and pull various objects on various surfaces Analyze and interpret data from force experimentation to draw conclusions about force and friction Use mathematics and computational thinking when analyzing data about friction and net force 	 Patterns Cause and Effect Systems and System Models Stability and Change

UNIT: Flectromagnetic Force

	Key Terms: Energy, force, friction, interaction., kinetic energy, Newton, spring scale, net force	• Apply understanding of forces to authentic scenarios	
<u>MS-PS2-2</u> <u>MS-PS2-3</u> <u>MS-PS2-5</u> <u>MS-PS3-2</u> <u>MS-PS2-4</u> <u>MS-PS3-2</u>	Magnetism• Magnets stick to attract objects that contain iron• All magnets have two poles, a north pole on one side and a south pole on the other side.• Like poles of magnets repel each other, opposite poles attract• Magnets are surrounded by an invisible magnetic field, which acts through space and through all nonmagnetic materials.• Magnetic materials may become temporary magnets when they interact with magnetic fields• The magnitude of the magnetic force between two interacting magnetic fields decrease as the distance between them increases.Key Terms:Attract, compass, gravitational force, induced magnetism, magnet, magnetic field, magnetism, permanent magnet, pole, potential energy, repel, temporary magnet	 Analyze and interpret data about magnetic force in a series of experiments looking at force over distance and force when more magnets are introduced. Formulate questions that arise from examining given data of objects interacting through magnetic forces. Determine cause and effect relationships that affect magnetic forces Predict the strength of magnetic forces due to cause and effect relationships Develop and use models to construct explanations about magnetic fields and explain their properties and interactions. 	 Patterns Cause and Effect System and System Models Energy and matter

MS-ETS1-2 MS-ETS1-3 MS-ETS1-4	• An electric circuit is a system that includes a	 Develop and use a model to explain how a magnetic field results from an electric current through a wire Design an electromagnet that will meet specific criteria and constraints 	 Patterns Cause and Effect System and System Models Structure and function Energy and Matter
<u>MS-PS3-5</u> <u>MS-ESS3-3</u> <u>MS-ESS3-4</u>	Energy Transfer	 Analyze and interpreting data to compare the components and function of motors and generators Develop and use models to explain energy transfers within a system 	 Cause and effect System and System Models Scale proportion and Quantity Energy and Matter Structure and function

	off an electromagnetElectric generators transfer energy from	• Obtain, evaluate and communicate information about energy sources for human use, including renewable and nonrenewable sources, and their environmental consequences.	• Stability and change
--	---	--	------------------------

	Electromagnetic Force Grade 7					
TIME FRAME	ΤΟΡΙϹ	PERFORMANCE TASKS ACTIVITIES/PROJECTS ASSESSMENTS	RESOURCES/INTERDISCIPLINARY CONNECTIONS			

November- December 6 sessions	Forces	 Investigation 1: What is force? Part 1 Push and pull Part 2: Friction Part 3: Forces in action Develop force problems, test force in online simulations Assessments: Survey, Science and engineering practices, performance assessment, response sheet, Inv 1 I-Check 	Fossweb Resources: What is a Force Forces Force and Motion Basics PHET Additional Resources Motion and Stability: Forces and Interactions BrainPOP: Force Harcourt School: Which Direction? SMART Notebook Lesson: Friction Force SMART Notebook Lesson: Push and Pull Song: Friction Happens
December 7 sessions	Magnetism	 Investigation 2: The force of magnetism Part 1 Properties of magnets Part 2: Magnetic Fields Part 3: Force over distance Make a compass, draw actual magnetic field, investigate polarity of metal objects, conduct more force investigations Assessment: Response sheet, , Science and engineering practices, performance assessment, Inv 2 I-Check 	Fossweb Resources: <u>The Force of Magnetism</u> <u>Adding magnetic fields</u> <u>Magnetism</u> <u>Additional Resources</u> <u>Web quest- Magnets and Static Electricity</u> <u>Discovery Education: Magnets</u> <u>How Stuff Works: Magnets</u>

January 8 Sessions	Electromagnetism	 Investigation 3: Electromagnetism Part 1 Building a circuit Part 2: Building an electromagnetic Part 3: Improving the design Make a rheostat, build the ultimate electromagnet Assessment: Response sheet, , Science and engineering practices, performance assessment, Inv 3 I-Check 	Fossweb Resources: <u>Electromagnetism</u> <u>Lighting a bulb</u> <u>Kitchen Magnets</u> <u>Virtual Electromagnet</u> Additional Resources
February 6 Sessions	Energy Transfer	 Investigation 4: Energy Transfer Part 1 Electric Motors Part 2: Electric Generators Part 3: Force and Energy Dissect electronics, Research Brushless motors. Assessment: Science notebook entry, performance assessment, Post test 	Fossweb Resources: Transfer of energy Kitchen Magnets Generator Dissection Additional Resources

	UNIT Grav	vity and Kinetic Energy Grade 7	
	ENDURING UNDERSTANDINGS	ESSENTIAL QU	JESTIONS
 Gravity is an attractive force between two objects An object in motion stays in motion unless acted on by an extrenal force For every action there is an equal and opposite reaction 		 How does gravity cause objects to move? What happens to an object's energy when it moves faster? What happens when moving objects collide? How can humans protect themselves in collisions? 	
NGSS	KNOWLEDGE Students will know:	SKILLS Students will be able to:	CROSS CUTTING CONCEPTS Students will apply:

MS-PS2-2 (foundational) MS-PS2-4 (foundational)	Acceleration• The average speed of an object is the distance it travles in a unit of time• The slope of the line on a graph of distance versus time represents the speed, steeper slopes represent faster speeds• An object that does not move at a constant speed has acceleration, change of speed per unit time• A falling objective increases speed with a constant acceleration, regardless of the object's mass.• Gravity is an attractive force between two objects with a rate of acceleration of 9.8 m/s2 on earthKey Terms:Accerleration, air resistance, ave 	 Analyze line slope to make claims about an object's speed Construct and analyze data sets to identify patterns and distinguish between speed and acceleration Use digital tools to analyze motion video data and determine the force of gravity on earth Apply understanding of acceleration to authentic scenarios 	 Patterns Scale, proportion, and quantity Systems and System Models Structure and function
MS-PS2-2 MS-PS2-4 MS-PS2-5 (Foundational) MS-ESS1-2 (Foundational)	 Gravity Gravity is an attractive force between two objects Mass is the amount of matter in an object. The acceleration of an object increases if the force acting upon it increases If identical force is applied to two objects with different masses, the more massive object will accelerate less that the less massive object 	 Calculate weights at locatoins with different gravitational forces Analyze data to construct explanations about proportional relationships between mass, force and acceleration Apply force of gravity to authentic situations 	 Patterns Cause and Effect System and System Models Scale, proportion and quantity

<u>MS-PS2-1</u> <u>MS-PS2-2</u> MS-PS3-1 <u>MS-PS3-5</u>	 <u>Key Terms:</u> Gram, mass, newton, weight <u>COLLISIONS</u> Kinetic energy is energy of moving things, potential energy is energy dependent on the position of the object A collision transfers kinetic energy Increasing the mass of an object by some factor increases its kinetic energy by the same factor; increasing the speed of an object by some factor squared An object in motion will stay in motion with the same speed unless acted on by an extrenal force For every action there is an equal and opposite reaction <u>Key Terms:</u> collisions, energy, friction, joule, kinetic energy, potential energy, variable 	• Collect and analyze data from collisions to determine the relationships between speed, mass, and kinetic energy	• C • S • S • E	Patterns Cause and Effect System and System Models Scale proportion and quantity Energy and Matter Stability and change
	 Engineering Task Impulse is force applied over a period of time Extending the time of a collision, by slowing an object's deceleration, results in less force on the object 	 Define an engineering problem and design solutions through an iterative process Engage in argument from evidence to evaluate solutions to a design challenge 	• S • E	Patterns Scale proportion and Quantity Energy and Matter Cause and effect

 Safety features to protect humans in collisions use properties of physics to slow deceleration Engineers use an iterative process to solve problems Key Terms: Constraint, criterion, impulse Develop and use a model to describe the iterative process of engineering design Construct explanations and ask questions about physics concepts related to kinetic energy, gravity and collisions 		• Engineers use an iterative process to solve problems	 the iterative process of engineering design Construct explanations and ask questions about physics concepts related 		
---	--	--	--	--	--

<u>Gravity and Kinetic Energy</u> Grade 7				
TIME FRAME	ΤΟΡΙϹ	PERFORMANCE TASKS ACTIVITIES/PROJECTS ASSESSMENTS	RESOURCES/INTERDISCIPLINARY CONNECTIONS	

November- December 6 sessions	Acceleration	Investigation 1:Acceleration Part 1: Speed Track Part 2: Acceleration Track Part 3: Acceleration of Gravity <i>Calculate race acceleration</i> Assessments: Survey, Science and engineering practices, performance assessment, Inv 1 I-Check	Fossweb Resources:Falling Ball Analysis slide show Movie Tracker Movie Tracker Data Falling Ball Hammer and Feather in Space Heavy and Ligh BallsAdditional Resources
December 7 sessions	Gravity	Investigation 2: The force of gravity Part 1: Mass and Weight Part 2: How Heavy Illustrate different gravitational force, calculate weight on other planets Assessment: Performance assessment, Inv 2 I-Check	Additional Resources

January 8 <i>Sessions</i>	Collisions	Investigation 3: Energy and Collisions Part 1 Potential and Kinetic Energy Part 2: Stop or Crash Part 3: Marble Collision <i>Write about netwon's laws</i> Assessment: Science notebook entry, performance assessment, Inv 3 I-Check	Fossweb Resources: Additional Resources
February 6 Sessions	Engineering Task	Investigation 4: Collision Engineering Part 1 Helmey Design Part 2: Big Idea <i>Research self driving cars, Tets water ballons</i> Assessment: performance assessment, Post test	Fossweb Resources: <u>Understanding Car Crashes Basic Physics</u> Additional Resources

		Grade 7	
	ENDURING UNDERSTANDINGS	ESSENTIAL Q	UESTIONS
 Living organisms convert the sun's energy into stored energy to be used within the organism or passed through the ecosystem. Evolution provides a scientific explanation for the diversity of organisms found on the earth due to descent with modification from common ancestors. Natural selection is the driving force for evolution. There are predictable patterns of inheritance. 			
NGSS	KNOWLEDGE Students will know:	SKILLS Students will be able to:	CROSS CUTTING CONCEPTS
MS-LS2-1 MS-LS2-2 MS-LS2-3	 Food Webs An organism's habitat is where it lives—the place where it can meet all of its requirements for life Biotic factors are living factors in an ecosystem; abiotic factors are nonliving factors. The Mono Lake ecosystem is defined by the interactions among the organisms and abiotic factors that exist in the Mono Lake basin 	 Record observations of organisms interacting within an ecosystem Predict interactions of organisms with each other and the abiotic environment Use data to create a food web illustrating feeding relationships in an ecosystem Interpret a food web to determine feeding relationships in an ecosystem 	 Patterns System and system models Scale, proportion and quantity Cause and effect Energy and matter Stability and change Influence of Science, Engineering, and Technology on Society and the Natural World

UNIT: <u>Populations and Ecosystems</u>

 Food is energy-rich organic matter that organisms need for life. All the feeding relationships in an ecosystem define the food web for that system. Feeding relationships define trophic levels: producers, consumers, and decomposers. The most general distinction between plants and animals is that plants use sunlight to make their own food, and animals consume either plants or other animals to obtain energy. Symbiotic relationships are interactions between two species. The food web includes producer/consumer, decomposer/prey, predator/prey, and scavenger/prey. Another symbiotic relationship is parasite/host in which one organism draws energy from another while it continues to live. 	 Analyze the components of a consumer's diet and trace them back to plants and plant products Classify symbiotic relationships in authentic scenarios Apply understanding of food webs to authentic scenarios
<u>Key Terms:</u> organism, habitat, species, producers, consumers, decomposers, trophic levels, energy, symbiosis, predator, prey, parasite, host, species, population, community, ecosystem, biotic, abiotic	

MS-LS2-1 MS-LS2-2 MS-LS2-3 MS-LS1-6 MS-LS1-7	 Energy Relationships Almost all food contains energy that comes originally from sunlight Between trophic levels in a food web, only 10% of energy is transferred from one level to the next Decomposers recycle food molecules to basic particles for use by organisms in the ecosystem. Food provides molecules that serve as fuel and building materials for all organisms. Energy transferred from food is measured in kilocalories. For the body to use energy and building materials, the food must be digested into molecules that are absorbed and transported to cells. Energy can change from one form to another in living things. In photosynthesis, plants use the energy in light to make sugars (in which it is stored as chemical potential energy) out of H₂O and CO₂ Photosynthesis produces potential energy and aerobic cellular respiration transfers usable energy to organisms. 	 Monitor and compare seed growth to determine the role of light in biomass production. Use data to create a food web illustrating energy relationships in an ecosystem Interpret a food web to determine energy relationships in an ecosystem State and interpret the photosynthesis equation Analyze the components of a consumer's diet and trace them back to plants and plant products Model to investigate energy transfer in food discussing limitations of the model Investigate and measure the amount of energy from a food source Determine the mass production needed to support primary, secondary, and tertiary consumers using the 10% rule of energy transfer Apply understanding of energy relationships to authentic scenarios 	 System and system models Cause and effect Energy and matter Stability and change
		02	

MS-LS2-1 MS-LS2-2 MS-LS2-4	 Populations Changing Over Time Reproductive potential is the theoretical unlimited growth of a population over time. A limiting factor is any biotic or abiotic component of the ecosystem that controls the size of a population Both lab experimentation and field observation contribute to the study of populations. Biotic and abiotic factors can limit population size All organisms, including the human species, are part of and depend on two main interconnected global food webs: one includes microscopic ocean plants, the animals that feed on those animals; the other web includes land plants, the animals that feed on them, and to an affect the survival of individual organisms and entire populations of species. Organisms with traits favorable to new environments thrive, while others may go extinct if they are not equipped to survive in the new environment. 	 Calculate the theoretical growth of a population with no limits Use a computer simulation to learn about population limiting factors, and analyze the results of a laboratory study Analyze data on the effects of abiotic factors on populations Relate abiotic and biotic factors to the growth or decline of populations Describe how a population can change over time in response to environmental factors Organize and present evidence to show how the extinction of a species is related to an inability to adapt to changing environmental conditions using quantitative and qualitative data Apply understanding of change over time to authentic scenarios 	 Cause and Effect Energy and matter System and system models Stability and change

MS-LS2-5Human Impact on Ecosystemsschoolyard to determine the health of the schoolyard ecosystem.EnerMS-ESS3-3 MS-ESS3-4A biodiversity index is one measure of the ability of an ecosystem to deal with stress. In a sustainable ecosystem, the system is resilient to change.Consider the effect of introduced species on native species and identify invasive species.• Ener • SystemMS-ETS1-2Introduced species compete with native species in an ecosystem.• Ener • System	
 If an introduced species has no predators in the new ecosystem, it can thrive and become invasive. Humans affect ecosystems in both positive and negative ways Humans rely on ecosystems for ecosystem services (provisioning, regulating, cultural, and supporting services). Changes in ecosystems can affect services essential to humans. Solutions can be engineered to mitigate human impact. Key Terms: Biodiversity index, native species, invasive, human impact 	 Cause and Effect Energy and matter System and system models Stability and change

<u>Unit Populations and Ecosystems</u> Grade 7

TIME FRAME	TOPIC	PERFORMANCE TASKS ACTIVITIES/PROJECTS ASSESSMENTS	RESOURCES/INTERDISCIPLINARY CONNECTIONS	
---------------	-------	--	--	--

March- April 20 Periods	Food Webs	Investigation 1: Milkweed Bugs Part 1 Introducing Milkweed Bugs Part 2: Milkweed bug Habitat Part 3: Observing Milkweed Bugs Maintain a milkweed-bug colony Assessments: Survey, Science and engineering practices, Science notebook entry Investigation 2: Sorting Out Life Part 1 Ecosystem Card Sort Part 2: Video Population Study Part 3: Ecoscenarios Learn about your biome Go local with Roots & Shoots! Create a local ecoscenario (Part 1) Learn more about the other two of the "primates" Share digital images with the FOSS community Jane Goodall Research Assessments: Science and engineering practices Investigation 3: Mono Lake Part 1: A Visit to Mono Lake Part 2: Mono Lake Food Web Part 3: Ecoscenarios Food Web Create a local ecosenario (Part2) Share digital images with FOSS community Investigation 4: Mini-habitats Part 1: Introducing Life Part 2: Observing Mini-habitats Localize your mini-habitats	Fossweb Resources: The Mono Lake Story Organism Database
-------------------------------	-----------	--	--

		Observe the effects of a decomposer Study a local watershed Share digital images with the FOSS community Assessments: Teacher Generated, Science Notebook	
April 15 Periods	Energy Relationship s	Investigation 5: Producers Part 1: Growing Producers Part 2: Biomass and Producers Part 3: Ecoscenario Producers Part 4: Energy Transfer from Food <i>Outdoor research: local plant survey</i> Participate in citizen science: Project Budburst Assessments: Investigations 4-5 I-Check Investigation 6: Following the Energy Part 1: Using Energy Part 2: Food Chain Game Part 3: Trophic Levels Part 4: Decomposers Diagram humans in food webs Describe human trophic levels Consider human in food webs Share digital images with the FOSS community Assessments: Investigations 6 I-Check	Fossweb Resources: Ecoregions Ecoscenarios Biomes Additional Resources Harcourt School: Energy Pyramid Song: Photosynthesis BrainPOP: Food Chains Harcourt School: Fun with Food Webs Song: It's the Food Web
May 8 Periods	Populations Changing Over Time	 Investigation 7: Population Size: Reproductive Potential Part 2: Limiting Factor Part 3: Population Dynamics <i>Discuss other population limitations</i> Study population dynamics in ecoscenarios 	Fossweb Resources: <u>Milkweed Bugs Unlimited</u> <u>Milkweed Bugs Limited</u> <u>Additional Resources</u> <u>BrainPOP: Population Growth</u>

		Simulate winter survival Assessments: Investigation 7 I-Check	
May June 14 Periods	Human Impact on Ecosystem	Investigation 8: Human Impact Part 1: Biodiversity Part 2: Invasive Species Part 3: Mono Lake Revisited Find out National Geographic bioblitz Learn about seafood choices Share digital images with the FOSS community Create a wildlife habitat at school Explore schoolyard biodiversity resources Create missing and wanted posters Assessments: Investigations 8 I-Check Investigation 9: Ecoscenarios Part 1: Human Involvement Part 2: Evaluating Solutions Part 3: Presentations Extending the Investigation Create a local ecoscenario (Part 4): local issues Assessment: Posttest	Fossweb Resources: Ecoscenario Research Center

Science

Grade 8

UNIT: <u>Chemical Interactions</u>		
Grade 8		
ENDURING UNDERSTANDINGS	ESSENTIAL QUESTIONS	

 ✓ Everything is made up of matter. ✓ The structure of matter is affected by energy. ✓ Substances are made up of particles with different properties that interact in different ways. ✓ Matter can be changed, but cannot be created or destroyed. 		 ✓ What is matter and how does it behave? ✓ How does energy affect matter? ✓ What makes one substance different than another? ✓ Where does matter go? 	
NGSS	KNOWLEDGE Students will know:	SKILLS Students will be able to:	CROSS CUTTING CONCEPTS Students will apply:
<u>MS-PS1-1</u> <u>MS-PS1-2</u> <u>MS-PS1-3</u>	 Periodic Table A substance is a form of matter with a unique composition and distinct physical and chemical properties that can be used to identify it. Substances can be represented with common names, chemical names, and chemical formulas All substances are composed of one or more of approximately 100 elements. An element can be identified by its physical and chemical properties such as density, melting point, boiling point, and magnetism. Elements can be grouped together according to similar chemical and physical properties. The relative abundance of elements varies with location in the universe. Predictions about elements can be made based on their physical and chemical properties and their location on the modern Periodic Table. 	 Observe a mystery mixture and develop a plan for testing pairs of substances to discover which two are in the mystery mixture. Use various laboratory techniques to determine the chemical and/or physical properties of an element Group elements according to their physical and chemical properties Relate element groupings to the modern Periodic Table Use location on the Periodic Table to make predictions about an unknown element's properties 	 Patterns Cause and Effect

MS-PS1-2 MS-PS1-4	 <u>Key Terms:</u> Substance, matter, element, density, metal, nonmetal, inert gases, reactivity, malleable, ductile, luster Particle Model Gas is matter—it has mass and occupies space. Matter is made of particles. Gas compresses when force is applied; gas expands when force is withdrawn. During compression and expansion, the number and character of particles in a sample of gas do not change; the space between the particles does change. Gases are composed of widely spaced individual particles in constant motion. There is nothing between gas particles except space. Key Terms: Compressed, particles, expansion, matter	 Observe the inflation of a balloon placed over a sodium bicarbonate and citric acid reaction Conduct controlled experiments to determine the volume of gas produced Investigate air to confirm that it qualifies as matter—it has mass and occupies space. Use syringes to discover that air can be compressed and expanded. Develop explanations for their observations Refine their model of air (gas) as independent particles with significantly large distances between them. Use representations to show the changes in particle density during compression 	 System and system models Cause and effect
<u>MS-PS1-4</u> <u>MS-PS3-3</u> <u>MS-PS3-4</u> <u>MS-PS3-5</u> <u>MS-ETS1-1</u> <u>MS-ETS1-2</u> <u>MS-ETS1-3</u> <u>MS-ETS1-4</u>	 Energy and Matter Matter exists in three phases: solid, liquid and gas, which are defined by the relative amount of particle motion in a substance. In solids, atoms are locked in position and only vibrate. In liquids, atoms are loosely connected and slide around. In gases, atoms are disconnected except for collisions. 	 Use a laboratory thermometer to accurately measure the temperature of a substance Plot a line graph of temperature measurements taken over time Identify melting and boiling points of a substance in a graph of temperature over time 	 System and system models Cause and effect Patterns Stability and Change Energy and matter Structure and Function

 Kinetic energy is energy of motion. Energy transfers between particles when they collide. Energy transfer by contact is conduction Energy is conserved. The amount of energy in a system does not change—no energy is ever created, and no energy is ever destroyed. Heat (energy transfer) is measured in calories. One calorie is the amount of heat needed to raise the temperature of 1 mL of water 1 degree Celsius. Phase changes are a result of changes in heat energy which determines particle motion. This is a physical change. Pure substances have characteristic intrinsic properties such as melting point and boiling point, which are independent of the amount of the sample. When a substance changes phase, the mass is conserved. No matter is created or destroyed, so the mass of an amount of substance at one phase is equal to the mass of that same amount of substance in another phase. Engineers try to solve problems that satisfy a set of criteria and that conform to constraints placed on a solution to the problem Key Terms: phase, solid, liquid, gas, particle, molecule, atom, matter, kinetic energy, heat energy, kinetic molecular model, Conservation of Mass, physical change, melting point, boiling point, calorie 	 Combine temperature data, observational data, and scientific reasoning to make claims about energy and phase changes Use the kinetic molecular model to predict how solids, liquids, and gasses would behave under various physical circumstances, such as heating or cooling Use boiling point and melting point data to determine the identity of an unknown substance. Engage in group discussions, listen to mini-lectures, watch interactive animations, and participate in a structured classroom reading. Apply understanding of the phases of matter to authentic scenarios Use their understanding of energy transfer to face an engineering problem:
---	---

MS-PS1-1 MS-PS1-2 MS-PS1-4	 Solutions Dissolving is an interaction between two substances in which one substance breaks apart and goes into another substance. A mixture is a combination of two or more substances. Dissolving occurs when one substance (solute) is reduced to particles and is distributed uniformly throughout the particles of a second substance (solvent). Dissolving involves both kinetic interactions (collisions) and attractive forces (bonds). Not all substances are soluble in water. Solutions can be separated back into their original components, which are not chemically changed. 	 Observe and describe candy-coated chocolate pieces in four different environments Generate definitions for melting and dissolving, based on their observations. Make two aqueous mixtures, one with soluble sodium chloride and one with insoluble calcium carbonate. Compare the two mixtures and attempt to separate them with filters. Separate the salt solution into its original components, using evaporation 	 Patterns Cause and effect
<u>MS-PS1-4</u> <u>MS-PS1-6</u> <u>MS-PS3-4</u> <u>MS-ETS1-1</u> <u>MS-ETS1-2</u> <u>MS-ETS1-3</u> <u>MS-ETS1-4</u>	 Phase Change Matter exists on Earth in three common states—solid, liquid, and gas. In solids, particles are held in place and move only by vibrating. In liquids, particles are held close, but are able to move around and over one another. Change of state is the result of change of energy in the particles in a sample of matter. The temperatures at which phase changes occur are different for different substances. 	 Heat three materials and observe the results. Observe change of state from liquid to solid and discover that the materials melt at different temperatures. Work on a mental model to explain what happens at a particle level when a substance changes state from solid to liquid. Use candles to increase the energy transferred to wax and sugar. 	 Patterns Cause and Effect System and system models Energy and Matter Stability and change

	 During phase change, particles do not change; relationships between particles do change In gases, particles move independently through space The processes of phase change are evaporation, condensation, melting, freezing sublimation, and deposition <u>Key Terms:</u> phase, solid, liquid, gas, particle, molecule, atom, matter, kinetic energy, heat energy, kinetic molecular model, physical change, melting point, boiling point, 	 Use data and their experience designing a thermos to design a "freezer" that will freeze water in the classroom. Investigate all three ordinary states of matter, using a condensation apparatus. Develop an explanation of the system, using their particle model. 	
MS-PS1-1 MS-PS1-2 MS-PS1-5	 Reactions Atoms combine to make particles of substances: molecules and ionic compounds. Molecules and ionic compounds are held together by attractive forces called bonds. A chemical reaction is a process in which the atoms of substances (reactants) rearrange to form new substances (products). Atoms are neither created nor destroyed during chemical reactions, only rearranged matter is conserved. The quantities of reactants available at the start of a reaction determine the quantities of products. The limiting factor is the reactant present in the lowest concentration. Reactants that remain in their original form after a reaction has run to completion were present in excess. 	 Construct two-dimensional representations of compounds—molecules and ionic compounds. Make and analyze representations of particles of familiar substances. Use atom tiles to represent of the reactant molecules and rearrange them to make product molecules. Write a balanced chemical equation for the reaction, using standard conventions. Use syringe-and-bottle system to compare volumes of gas produced with equal volumes of two solutions. Work individually and in groups to review the big concepts. 	 Cause and Effect System and system models Scale, proportion and quantity Stability and change

Key Terms: Compounds, bonds, reactants, products, limiting factor		
---	--	--

	<u>Unit Chemical Interactions</u> Grade 8			
TIME FRAME	ΤΟΡΙϹ	PERFORMANCE TASKS ACTIVITIES/PROJECTS ASSESSMENTS	RESOURCES/INTERDISCIPLINARY CONNECTIONS	
September 10 Periods	Periodic Table	Investigation 1: Substances Part 1: Mystery Mixture Part 2: Mixing Substances Students share digital images with the Foss community Assessment: Survey, Science and Engineering practices Investigation 2: Elements Part 1: Periodic Table Part 2: Elements in the World Make an element use - table Share digital images with Foss community. Assessment: Science and Engineering practices, Response sheet, Investigations 1-2 I-check	FOSSWeb Resources Two substance reactions Periodic Table of the Elements Additional Resources Elements Harcourt School: Zooming in on Matter Interactive Periodic Table SMART Notebook lesson: Families and Periods SMART Notebook lesson: Using the Periodic Table Song: Elements Song: Meet the Elements TD Interactive Periodic Table USIS Vol. 1 – Is It Made of Molecules, pg.85 BrainPOP: Metals	

			SMART Notebook lesson: Metals and NonmetalsUSIS Vol. 1 – Rusty Nails, pg. 91BrainPOP: pH ScaleBrainPOP: Acids and BasesSMART Notebook lesson: Acids and BasesSMART Notebook lesson: Acid Base VennDiagramKitchen Chemistry Interactive
September- October 8 Periods	Particle Model	Investigation 3: Particles Part 1: Capture in the Gas Part 2: Air is Matter Part 3: Air as Particle <i>Teacher Created project & Problem to solve</i> Assessment: Science and Engineering practices, Science notebook entry, key point chart, Investigation 3-I- check	FOSSWeb Resources Gas in a Syringe Particles in gases
October- November 21 periods	Energy and Matter	Investigation 4: Kinetic Energy Part 1: Gas Expansion/ Contraction Part 2: Liquid Expansion/Contraction Part 3: Solid Expansion/ Contraction Assessment: Science notebook entry, response sheet, key point chart, Investigation 4-I- check <i>Read and summarize article "Expansion and</i> <i>contraction"</i> Investigation 5: Energy Transfer Part 1: Mixing Hot and Cold Part 2: Particle Collisions Part 3: Heat	FOSSWeb Resources Particles in Solids, Liquids, and Gases Bottle Thermometer Setup Brass Sphere and Ring Demonstration Energy Flow Mixing Hot and Cold Water Energy Transfer by Collision Thermometer Additional Resources

		Additional Science problemsAssessment- Response sheet, science and engineering practices, Investigation 5- I-CheckInvestigation 6: Thermos Engineering Part 1: Insulation Part 2: Thermos DesignUse Google Docs/Slides for presentation Assessment- Science and engineering practices	Harcourt School: Heat makes a difference Harcourt School: States of Matter Nature of Matter Video SMART Notebook lesson: States of Matter Song: Solid, Liquid, Gas BrainPOP: Matter Changing States BrainPOP: States of Matter Uncovering Student Ideas In Science (USIS) Vol. 2 –Freezing Ice, pg.59 USIS Vol. 3 - Is It a Solid, pg.25
November 3 Periods	Solutions	Investigation 7: Solutions Part 1: Dissolve and Melt Part 2: Solubility <i>Explore Saturation</i> <i>Explore Concentration</i> Assessment- Quick write, science notebook entry, science and engineering practices	FOSSWeb Resources Exploring dissolving Additional Resources Harcourt School: Melting and Boiling
December 9 Periods	Phase Change	Investigation 8: Phase Change Part 1: Melting Temperature Part 2: Adding Thermal Energy Part 3: Freeze Water Part 4: Changing Phase <i>Explore melting temperature of margarine and</i> <i>other solids.</i> Assessment -quick write, science and engineering practices, response sheet, science notebook entry, Investigation 7-8 I-check.	FOSSWeb Resources Particles in Solids, Liquids, and Gases Aluminum Foil Spoon Construction Hoar Frost Additional Resources Vernier Lab: Freezing Temperature of Water Vernier Lab: Boiling Temperature of Water Vernier Lab: How Low Can You Go? Vernier Lab: Ziploc Ice Cream

December- January 12 Periods	Reactions	Investigation 9: Reaction Part 1: Substance Models Part 2: Limewater Reaction Part 3:Baking Soda and Acid <i>Teacher created projects</i> <i>Explore the rust reaction</i> Assessment- Science notebook entry, response sheet, science and engineering practices, Investigation 9 I-Check Investigation 10: Limiting Factor Part 1: Citric Acid and Baking Soda Part 2: Identifying Key Ideas <i>Problem solving for engineering design</i> Assessment- Science notebook entry, science and engineering practices, Post kit test	FOSSWeb Resources Burning Sugar Demonstration Additional Resources PhET: Balancing Chemical Equations interactive USIS Vol. 1 – Ice Cubes in a Bag, pg. 49 USIS Vol. 1 – Lemonade, pg. 55 BrainPOP: Physical and Chemical Changes Electrolysis Video PhET: Build a Molecule Interactive I Properties and Changes Song: Atoms in My Life USIS Vol. Chemical Bonds, pg. 71,
---------------------------------	-----------	--	--

	UNIT: <u>Earth History</u> Grade 8				
	ENDURING UNDERSTANDINGS ESSENTIAL QUESTIONS				
 ✓ The Earth can be separated into various spheres which interact dynamically. ✓ Changes in the Earth's surface are caused by constructive and destructive forces. 		 ✓ How do Earth's systems work? ✓ Where does energy go? 			
NGSS	KNOWLEDGE Students will know:	SKILLS Students will be able to:	CROSS CUTTING CONCEPTS Students will apply:		

MS-ESS1-4	 Grand Canyon Rock Layers Rock layers are three dimensional features whose sequences are the same from one location to another along the Grand Canyon. Different rates of erosion are caused by differences in the properties in the rock layers, such as hardness, brittleness and composition. Earth's surface has of a variety of different landforms and water features. Limestone, sandstone, and shale are rocks found in the Grand Canyon that can be identified by their characteristics Key Terms: composition, brittleness, properties, deposition, erosion, 	 Compare and correlate rock data from two locations Explain horizontal lines on canyon walls Use acid to test for a specific substance in a rock sample Create explanations about constructive and destructive forces based on observed information of rocks and landforms Apply understanding of constructive and destructive forces to authentic scenarios 	 Patterns System and model system Scale, proportion and quantity
MS-ESS2-1 MS-ESS2-2 MS-ESS1-4	 Sediments and Soils Sediments form through the processes of chemical and physical weathering. Some sediment materials are derived from organic materials such as remains of marine organisms. Sediments turn into solid rock (such as sandstone, shale, and limestone) through the process of lithification, which involves compaction, cementation, and dissolution 	 Sort a rock mixture by hand and model how wind can separate earth materials Identify sediments within a sedimentary rock Identify sediments within soil Test the chemical properties of soils and evaluate samples to select appropriate locations for gardening Create sand and consider how rocks experience abrasion and other forms of physical weathering 	 Patterns Stability and change Scale, proportion and quantity

	 Soils contain sediments as well as organic material from decomposed plants, animals, and bacteria. Like rocks, soils are often found in layers, each having a different chemical composition and texture. Eroded sediments can be transported by water, wind, or ice and deposited in new locations. The same Earth forces that occurred in the past occur today. This principle is called Uniformitarianism. Rocks are constantly being changed by physical and chemical weathering. The relative ages of sedimentary rock can be determined by the sequence of layers. Lower layers are older than higher layers Key Terms: cementation, crystallization, compaction, deposition, landforms and sediments, soils, lithification 	 Make observations of sand properties and relate to the processes that created the sample Model the formation of sedimentary rocks in an ancient environment Test two oceanic materials to see what might be a component of limestone. Describe the creation of rock layers in the Grand Canyon Model the Earth Processes of erosion and deposition in a stream table and analyze how variables affect the system Apply understanding of sediments and soils to authentic scenarios 	
MS-ESS2-6 MS-ESS1-4 MS-LS4-1 MS-LS4-2	 Fossils Fossils provide evidence of how life and environmental conditions have changed over time. Index fossils can be used as indicators for the relative age of sedimentary rock layers, older rocks = older fossils. 	 Use index fossils to correlate rock layers Compare various events and fossils to derive an order of succession over geological time Make inferences from fossil evidence that contribute to an explanation of fossil succession 	 Patterns Scale, proportion and quantity

	<u>Key Terms:</u> fossils, index fossils, environment, relative age, absolute age, catastrophic events	• Apply understanding of fossils to authentic scenarios	
MS-ESS2-1 MS-ESS2-2 MS-ESS2-3 MS-ESS3-1 MS-ESS3-2	 Plate Tectonics The Earth is layered with a lithosphere, a hot convecting mantle, and a dense metallic core. The solid crust of the Earth, including both the continents and the ocean basins, is made up of separate tectonic plates. The plates ride on a denser, hot, gradually deformable layer of the Earth. Heat inside the earth melts rock; melted rock can cool and form igneous rocks When plates interact, high heat and immense pressure can change rock into new forms of rock (metamorphic rock). Major geological events, such as earthquakes, volcanic eruptions, and mountain building result from the motion of tectonic plates. Sea floor spreading and subduction zones are evidence for the theory of plate tectonics. Key Terms: tectonic plates, dense, molten, subduction, uplifting, sea-floor spreading, Ring of Fire, igneous, asthenosphere, Wegener's theory stratigraphic column, 	 Use salol to model the cooling of igneous rocks and design an experiment to test the effect of cooling rate on crystal formation. Model the interactions between the layers of the Earth Analyze authentic earthquake data to determine the locations of tectonic plate boundaries Model types of interactions at plate boundaries that cause earthquakes, volcanic eruptions, mountain building, and sea floor spreading Present evidence to support arguments for the theory of Plate Tectonics Apply understanding of plate tectonics to authentic scenarios 	 System and system models Scale, proportion and quantity Patterns Stability and Change

<u>MS-ESS2-1</u> <u>MS-ESS3-2</u> <u>MS-ESS3-2</u> <u>MS-ESS3-3</u> <u>MS-ESS3-4</u> <u>MS-ESS3-4</u> <u>MS-ESS3-5</u> <u>MS-ESS1-4</u>	 Geoscenarios Geological processes help tell the story of a physical place. Evidence and observations of a site's geology provide clues to tell the geological story. Knowledge of uplift, plate tectonics, volcanism, weathering, erosion, and fossil evidence plus the principles of uniformitarianism, superposition, and original horizontality can help tell the story of a place. Scientists specialize in many different disciplines to collect and analyze evidence to help put together Earth's geological history. Scientists use a number of different tools and techniques to analyze and synthesize evidence obtained from Earth to tell its story. 	 Develops a time line of events related to their place or process. Develop presentations. Review the processes that drive the rock cycle and the constructive and destructive processes that shape Earth. Explore various careers in the geosciences. 	 System and system models Scale, proportion and quantity Stability and Change
--	--	---	--

<u>Unit Earth History</u> Grade 8

TIME FRAME	ΤΟΡΙϹ	PERFORMANCE TASKS ACTIVITIES/PROJECTS ASSESSMENTS	RESOURCES/INTERDISCIPLINARY CONNECTIONS
January 8 periods			FOSSWeb Resources Landforms Tour

		Part 2: Grand Canyon Rocks Part 3: Correlating Grand Canyon Rocks View Colorado River Expedition Share digital images with the FOSS community Discuss human history at the Grand Canyon Research Native American activities Tour national parks in 3D View National Park Service web cameras View National Parks presentations Review American Geological Institute resources Assessment: Survey, Science notebook entry, Quick write, Scientific practices, Quick write	Scale ModelGrand Canyon FlyoverPowell's River TripGrand Canyon Rocks CorrelationAdditional ResourcesBrainPOP: ErosionGrand Canyon Formation VideoGrand Canyon National Park SiteHarcourt School: The Grand CanyonHarcourt School: The Rock CycleSMART Notebook lesson: Rock Cycle
January February 6 blocks	Sediments and Soils	Investigation 2: Weathering and Erosion Part 1: Sorting Earth Materials Part 2: Stream Table Part 3: Weathering Propose a sorting challenge View stream-table simulations View debris-flow videos Share digital images with the FOSS community View multimedia: "Sand types" Investigate sand-formation variables Create a sand museum Explore chemical weathering Read about the Ogallala Aquifer Encourage further soil studies View "Dig It! The secrets of soil" Assessment: Scientific practices, science notebook entry, quick write, response sheet, Investigations 1-2 I-Check	FOSSWeb Resources Stream Table High vs Low Flow Grand Canyon Flood Frost Wedging Rock Fall Sandstone Formation Shale Formation Zion National Park Expedition Limestone Formation Rock Column Movie Maker Rock Database Sedimentary Rocks Tour Additional Resources BrainPOP: Soil BrainPOP: Weathering Vernier Lab: Soil Study

		Investigation 3: Deposition Part 1: Sandstone and Shale Part 2: Limestone Part 3: Interpreting Sedimentary Layers Create model sedimentary rocks Share digital images with the FOSS community Explore famous landmarks Explore beneath the Ocean Floor with the JOIDES Resolution Assessment: Science notebook entry, scientific practices, quick write, Investigations 3 I-check	
February March 3 blocks	Fossils	Investigation 4: Fossils and Past Environments Part 1: Fossils Part 2: A Long Time Ago Part 3:Student Time Lines Part 4: Index Fossils Add Grand Canyon rocks to the student time View fossil gallery View a Grand Canyon geological time clock View the Grand Age of Rocks: The Numeric Ages for Rocks exposed within Grand Canyon View interactive time line Assessment: Rock Column movie maker, Response sheet, scientific purposes, Investigation 4 I-check	FOSSWeb Resources Rock Column Movie Maker Limestone Formation Sandstone Formation Shale Formation Timeliner Time Machine Index-Fossil Correlation Dating Rock Layers Additional Resources BrainPOP: Fossils Harcourt School: How a fossil forms SMART Notebook Lesson: Fossils Song: I am a Paleontologist Song: Fossil Man BrainPOP: Geologic Time

		Investigation 5: Igneous Rock	FOSSWeb Resources
		Part 1: Earth's Layers	Pacific Northwest Tour
		Part 2: Salol Crystals	Earth's Interior
		Grow Rock-candy crystals	Salol Crystal Formation
		View minerals in our environment	Extrusive Rock Formation
		Research gemstones in the U.S.	Intrusive Rock Formation
		Explore The Life Cycle of a Mineral Deposit	Yosemite National Park Field Trip
		Share digital Images with the FOSS community	Hawaii Field Trip
		Research gigantic crystals	Rock Database
		Assessment: Scientific practices, science notebook	Longitude and Latitude
		entry, Investigation 5 I-Check	Volcano Plotting Activity
			Volcanoes around the World
		Investigation 6: Volcanoes and Earthquakes	Volcanoes Formation
		Part 1: Mapping Volcanoes and Earthquakes	Earthquake Plotting Activity
March	Plate Tectonics	Part 2: Moving Continents	Earthquakes around the world
18 periods		Part 3: Plate Tectonics	Convection
1		Research disaster preparedness	Folding
		<i>View animations for earthquake terms and concepts</i>	Mountain Types
		View IRIS education and public outreach	Mountain-Card Locations
		View US Geological Survey earthquake hazards	Appalachian Mountain Tour
		resources	How Metamorphic Rocks Form
		View US Geological Survey volcano hazards resources	Slate Shanandaah Vallay
		View volcano hazards program webcams Search the volcano location database	<u>Shenandoah Valley</u> <u>The Geological Story of Shenandoah</u>
			Mountain Folding and Erosion
		<i>View plate tectonics visualizations</i> Assessment: Scientific practices, science notebook	Additional Resources
		entry, quick write, investigation 6 I-check	Mount St. Helens: The eruption Impact
		Investigation 7: Mountains and Metamorphic Rocks	NOAA Plate Tectonics
		Part 1: Plate Models	BrainPOP: Plate Tectonics,
		Part 2: Metamorphic Rocks	Ring of Fire
		Part 3: Shenandoah (Optional)	Plates and Boundaries
	1		

		Add to time lines View animated plate tectonics Find plate boundaries Research igneous and metamorphic rocks Take a virtual tour of Shenandoah Assessment: Scientific practices, quick write, investigation 7 I-check, science notebook entry	Harcourt School: Earth's Layers Harcourt School: Strike Slip Fault Song: Rumble, Rumble
March 9 Periods	Geoscenarios	 Investigation 8 : Geoscenarios Part 1: Introduction to the Project Part 2: Team Synthesis Part 3: Presentations View Earth Science World Image Bank Explore local geological history Tour national park geology Access more local resources Assessment: Scientific practices, Geoscenario presentation Investigation 9: What is Earth's Story? Part 1: Revisit the Grand Canyon Part 2: Review the Evidence Invite a speaker Continue to tell the geological story of your place Not just rocks: Check out Earth Science careers Explore Schoolyard Geology Assessment: Science notebook entry, revisit quick write, scientific practices, posttest 	FOSSWeb Resources Geoscenarios Timeliner Rock Column Movie Maker Grand Canyon Revisited Colorado Plateau Over Time

UNIT: <u>Heredity and Adaptation</u> Grade 8

	ENDURING UNDERSTANDINGS	ESSENTIAL QUESTIONS	
 ✓ The chronological fossil record documents the existence, diversity, extinction, and change of life forms throughout history and life on Earth. ✓ Variation in a population can occur due to random genetic mutations, which can have harmful, helpful or no effects. ✓ An adaptation is an inherited trait that increases an organism's chances of surviving in an environment long enough to pass on its genes. ✓ Natural selection is a process by which individuals best adapted to their environment tend to survive and pass on its genes. 		 What does the fossil record tell us about how life has changed on Earth? What leads to variations in a population? How are humans influencing inheritance? 	
	Γ	Γ	
NGSS	KNOWLEDGE Students will know:	SKILLS/ PRACTICES Students will be able to:	CROSSCUTTING CONCEPTS Students will apply
<u>MS-LS4-1</u> <u>MS-LS4-2</u>	 History of Life The chronological fossil record documents the existence, diversity, extinction, and change of life-forms throughout Earth's history. The fossil record is incomplete because of the nature of fossilization. Structural similarities between ancient and modern organisms is one kind of evidence from which we can infer relatedness. 	 Observe a collection of fossils and find out more about the organisms and when they lived. Construct a time line of Earth's history and assign dates to the fossil samples. Explore the fossil evidence that supports current theories of how this transition occurred, based on limb structure. 	 Patterns Scale, Proportion, and Quantity Structure and Function

		 Predict what an organism may have looked like in the millions of years between two of the fossils. Dissect an owl pellet, and search for limb-structure similarities between the prey organisms and the extinct organisms they learned about earlier. 	
<u>MS-LS3-1</u> <u>MS-LS3-2</u> <u>MS-LS4-2</u> <u>MS-LS4-3</u>	 Heredity A cladogram is a model that demonstrates evolutionary relationships among organisms. Embryo development can be used to identify relationships not evident in adults of different species. Heredity explains why organisms are similar but not identical to their parents. Genes on DNA code for proteins that are responsible for an organism's traits. Variation of traits in a population is established in part as a result of sexual reproduction. A Punnett square is a model used to predict the probability of inheriting genotypes in individuals of a population. 	 Examine a human family tree and then build a vertebrate cladogram. Use embryological data to determine where a dolphin fits in their cladogram. Explore the variation of four features to determine what traits they have. Determine the distribution of the traits in the class. Study a population of larkeys, a make-believe animal, to analyze their traits. Use an online simulations to model and predict the inheritance of traits in a larkey population. Use Punnett squares to predict the probability of offspring traits when the genotypes of parents are known. Compare the probabilities of inheritance in individual offspring and populations. 	 Patterns Cause and Effect

<u>MS-LS3-1</u> <u>MS-LS4-4</u> <u>MS-LS4-5</u> <u>MS-LS4-6</u>	 Evolution Variation in a population can occur due to random genetic mutations, which can have harmful, helpful, or no effects. An adaptation is an inherited trait that increases an organism's chances of surviving in an environment long enough to pass on its genes. Natural selection is a process by which individuals in a population best adapted to their environment tend to survive and pass their traits to subsequent generations. Change in populations by means of natural selection is the basis for the theory of evolution, which best explains the biodiversity on Earth. Humans use genetic technologies to influence inheritance. 	 Use online activities to explore the adaptation of color in walking sticks. Use online activities to track a population of walking sticks over five generations. Consider how natural selection affects the incidence of walking stick color over time. Research different genetic technologies. Assess how those technologies might address current genetic issues. Communicate their findings to classmates 	 Patterns Cause and Effect System and System Models Stability and Change

	Unit Heredity and Adaptation Grade 8				
TIME FRAME	ΤΟΡΙϹ	PERFORMANCE TASKS ACTIVITIES/PROJECT ASSESSMENT	RESOURCES/INTERDISCIPLINARY CONNECTIONS		
May 9 Periods	History of Life	Investigation 1 History of Life Part 1: The Fossil Record Part 2: Transitions <i>Teacher created projects</i> <i>Google slides</i> ASSESSMENT-entry level survey, Investigation 1-I-Check, notebook entry, quick write	FOSSWeb Resources An interview with Jennifer Clack Fossils slide show Biodiversity slide Videos and Slideshows Fish and fingers Great Transitions- The origin of Tetrapod		
May 10 Periods	May Heredity May Heredity		FOSSWeb Resources A Model for Predicting Genetic Variation Larkey Punnett Square Larkey Impossible Traits Heredity Slide Show		

May 9 Periods	Evolution	Investigation 3 Evolution Part 1: Adaptation Part 2: Natural Selection Part 3: Genetic Technology Teacher created activities Google slides models/ projects	FOSSWeb Resources Walking Sticks: Eat insects Walking Sticks: Find insects in Three Environments Larkey's Natural Selection Videos and Slide Show The Making of the Fittest: Natural Selection and
5	Evolution	Google slides models/ projects Self -assessment	The Making of the Fittest: Natural Selection and Adaptation
		Assessment- Investigation 3 I- Check, quick write, exit slip, notebook entry	The Origin of Species: The Beak of the Finch Biodiversity- Slide Show

UNIT: <u>Human System Interactions</u> Grade 8

ENDURING UNDERSTANDINGS		ESSENTIAL QUESTIONS	
✓ Cells	work together in tissues, organs, and organ systems.	✓ How do the eyes work as part of a system?	
NGSS	KNOWLEDGE Students will know:	SKILLS Students will be able to:	CROSS CUTTING CONCEPTS Students will apply
MS-LS1-1 MS-LS1-3	 Systems Multicellular organisms are complex systems composed of organ systems, which are made of organs, which are made of tissues, which are made of cells. Cells are made of cell structures, which are made of molecules, which are made of atoms. The human body is a system of interacting subsystems. 	 Research a diagnosis focusing on human organ systems. Make a diagnosis of a patient, arguing their case to other students. 	 Scale, Proportion and quantity Cause and Effect Structure and Function Systems and system models

	Key Terms: cell, tissue, organ, organ system		
MS-LS1-3 MS-LS1-7	 Cells The human body is a system of interacting subsystems. The respiratory system supplies oxygen and the digestive system supplies energy (food) to the cells in the body. The circulatory system carries food and oxygen to the cells in the body and carries waste products to the excretory/respiratory systems for disposal. Aerobic cellular respiration is the process by which energy stored in food molecules is converted into usable energy for cell. Key Terms: respiratory system, digestive system, cellular respiration, cell, tissue, organ, organ system 	 Manipulate an online activity to add detail to their ideas. Construct a model to illustrate the pathways that oxygen and energy (food) take from the external environment to a muscle cell in the leg. Model the substances and steps in aerobic cellular respiration 	 Systems and system models Scale, Proportion and quantity Energy and Matter
MS-LS1-3 MS-LS1-8	 The Nervous System Sensory receptors respond to an array of mechanical, chemical, and electromagnetic stimuli. Sensory information is transmitted electrically to the brain along neural pathways for processing and response. Neural pathways change and grow as information is acquired and stored as memories. 	 Compare touch sensitivity between fingertips and knuckles to learn about pressure receptors and receptive fields Develop a model to explain how messages are transmitted along neurons and across synapses, to and from the brain. Identify scents, and the sense of sight by testing reaction time. 	 Scale, Proportion and quantity Structure and Function Cause and effect Systems and system models Patterns

Key Terms: sensory receptors, stimuli, neurons	 Read about chemical receptors and photoreceptors and consider how their eyes are designed to interpret electromagnetic information. Use mirror drawing to explore the connection between hand–eye coordination, learning, and memory. Look for patterns to determine strategies for improving short-term memory.
--	--

Unit Human System Interactions Grade 8						
TIME FRAME	TOPIC	PERFORMANCE TASKS ACTIVITIES/PROJECTS ASSESSMENT	RESOURCES/INTERDISCIPLINARY CONNECTIONS			
March 5 Periods	Systems	Investigation 1 System Connections Part 1: Human Body Structural Levels Part 2: System Research Research diseases Talk to a doctor Research other human organ systems Research standard first aid	FOSSWeb Resources Levels of Complexity Doctor Video 1 Human Systems Structural Levels			

Unit Human System Interactions

		Assessment: Entry-level survey, science notebook entry, performance assessment	
April 7 Periods	Cells	Investigation 2: Supporting Cells Part 1: Food and Oxygen Part 2: Aerobic Cellular Respiration Research aerobic cellular respiration Research bacteria Research mitochondrial disease Assessment: Response sheet, performance assessment, Investigations 1-2 I-check	FOSSWeb Resources <u>Human Cardiovascular System</u> <u>Digestive and Excretory Systems</u> <u>Circulatory and Respiratory Systems</u>
April 14 Periods	The Nervous System	Investigation 3: The Nervous System Part 1: Interacting with the Environment Part 2: Sending a Message Part 3: Other Senses Part 4: Learning and Memory Measuring sounds levels Research different kinds of hearing aids Compare sensory systems of different animals Find out more about Helen Keller Assessment: Science notebook entry, response sheet, Investigation 3 I-check, Posttest	FOSSWeb Resources Touch Menu Brain: Synapse Function Smell Menu Vision Menu Reaction Timer Additional Resources BrainPOP: Neurons BrainPOP: Nervous System BrainPOP: Brain SMART Notebook lesson: Central Nervous System Song: Parts of the Brain Song: Whatta Brain Song: Come On, Use Your Brain

Resources

Appendix F Science & Engineering Practices

Appendix G Crosscutting Concepts

NJ Technology Resources