Science Forensic Science Curriculum

Grades 11-12

Curriculum Contributors: Teresa Tenreiro

> **Supervisor** Lisa Corona

Directors Dr.Christy Oliver-Hawley

Superintendent of Schools Dr. Antoine Gayles

Board of Education Approved:

Table of Contents

Section	Page
Mission Statement	3
Academic Overview	3
Affirmative Action Compliance Statement	3
Next Generation Science Standards Overivew	4
Forensic Science Overview	4
Units and Pacing Charts	
Introduction to Forensics and Fingerprinting	5
Analysis of Hair, Fiber, and Trace Evidence	12
Blood Evidence and DNA Analysis Unit	
Toxicology	21
Handwriting Analysis	28
DNA Analysis	34
Ballistics and Impressions	37

District Mission Statement

The mission of the Hillside Public Schools is to ensure that all students at all grade levels achieve the New Jersey Core Curriculum Content Standards and make connections to real-world success. We are committed to strong parent-community school partnerships, providing a safe, engaging, and effective learning environment, and supporting a comprehensive system of academic and developmental support that meets the unique needs of each individual.

Academic Area Overview

The Hillside Township School District is committed to excellence. We believe that all children are entitled to an education that will equip them to become productive citizens of the twenty-first century. We believe that an education grounded in the fundamental principles of science will provide students with the skills and content necessary to become our future leaders.

A sound science education is grounded in the principles of inquiry and rigor. Children are actively engaged in learning as they model real-world scientific behaviors to construct knowledge. They have ample opportunities to manipulate materials in ways that are developmentally appropriate to their age. They work in an environment that encourages them to take risks, think critically, make models, note patterns and anomalies in those patterns. Children are encouraged to ask questions, not just the "how" and the "what" of observed phenomena, but also the "why".

Our program provides teachers with cost-effective science materials that are aligned to state and national standards, incorporate instructional strategies that are research-based, and provides teachers with a deep understanding of science and the pedagogical underpinnings of science. Our teachers receive quality professional development through a district partnership with the Merck Institute for Science Education as well as the Martinson Foundation at Fairleigh Dickinson University. Our K-8 kit based program encourages "hands-on science" and is endorsed by the National Science Foundation.

Equality and Equity in Curriculum

The Hillside Township School District ensures that the district's curriculum and instruction are aligned to the State's Core Curriculum Content Standards and addresses the elimination of discrimination and the achievement gap, as identified by underperforming school-level AYP reports for State assessment, by providing equity in educational programs and by providing opportunities for students to interact positively with others regardless of race, creed, color, national origin, ancestry, age, marital status, affectional or sexual orientation, gender, religion, disability or socioeconomic status.

N.J.A.C. 6A:7-1.7(b): Section 504, Rehabilitation Act of 1973; N.J.S.A. 10:5; Title IX, Education Amendments of 1972

New Jersey Student Learning Standards for Science

The New Jersey Student Learning Standards for Science (NJSLS-S) describe the expectations for what students should know and be able to do as well as promote three-dimensional science instruction across the three science domains (i.e., physical sciences, life science, Earth and space sciences). From the earliest grades, the expectation is that students will engage in learning experiences that enable them to investigate phenomena, design solutions to problems, make sense of evidence to construct arguments, and critique and discuss those arguments (in appropriate ways relative to their grade level). The foundation of the NJSLS-S reflects three dimensions — science and engineering practices, disciplinary core ideas, and crosscutting concepts. The performance expectations are derived from the interplay of these three dimensions are integrated into all learning experiences. Within each standard document, the three dimensions are intentionally presented as integrated components to foster sensemaking and designing solutions to problems. Because the NJSLS-S is built on the notions of coherence and contextuality, each of the science and engineering practices and crosscutting concepts appear multiple times across New Jersey Department of Education January 2022 Page 1 of 200 topics and at every grade level. Additionally, the three dimensions should be an integral part of every curriculum unit and should not be taught in isolation.

Forensic Science Overview

Students in the Forensic Science course continue to develop knowledge in the core disciplinary ideas described in the Next Generation Science Standards (NGSS) including science as inquiry. The course will introduce students to the scientific methodologies used in forensic investigations. The objectives of this course are to apply the Next Generation Science Standards (NGSS) Crosscutting Concepts that bridge disciplinary boundaries, uniting core ideas throughout the fields of science and engineering.

Introduction to Forensics and Fingerprinting Unit

	ENDURING UNDERSTANDINGS	ESSENTIAL QUES	TIONS
 crime. ✓ Fingerprievidence scene. ✓ There are death. ✓ Various control of the scene of the scene. 	Scientists use evidence to reconstruct the events of a nts are unique to individuals and can be used as in arguing which individuals were present at a crime e multiple common causes of death. e various categories associated with the manner of haracteristics can be determined from human remains, height and sex.	 ✓ How do we catch and convict criminals? ✓ Can fingerprints identify a criminal with absolute certainty? What should be the standard of proof? ✓ How do forensic anthropologists identify human remains? 	
NJ Student Learning Standards (NJSLS-S)	KNOWLEDGE Students will know:	SKILLS & PRACTICES Students will be able to:	CROSSCUTTING CONCEPTS: Students will be apply to apply:
Focus on Practices and Crosscutting Concepts	 Forensic Science Intro History of Forensic Science Alphonse Bertillon - devised first scientific system of personal identification Edmond Locard - demonstrated how the application of scientific method work in the crime laboratory - Locard's exchange principle 	 SKILLS: Use an equation to calculate probability Follow procedures while investigating a crime scene PRACTICES: Asking Questions and Defining Problems 	Patterns• Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena.Cause and Effect

 Ethics and standards Frye standard - is the procedure/technique/principle "generally accepted" by a meaningful segment of the scientific community Daubert ruling - does the expert's testimony rest on reliable foundation and is relevant to the case Deductive vs. Inductive reasoning Testimonial Evidence is a witness statement. Physical Evidence is an object or material relevant to the crime. Can prove that there was a crime in the first place Can back up or disprove witness statements Can link a suspect to victim or crime scene Can allow investigators to reconstruct the crime Class data can be used to narrow a suspect down to one person out of a large group of people based on known characteristics. The Crime Scene - information at crime scenes must be gathered in a systematic way. The following procedures must be taken: Preservation and isolation of the scene Observations and documentation 	 Ask questions that arise from examining models or a theory to clarify relationships. Analyzing and Interpreting Data Apply concepts of statistics and probability (including determining function fits to data, slope, intercept, and correlation coefficient for linear fits) to scientific and engineering questions and problems, using digital tools when feasible. Obtaining, Evaluating, and Communicating Information Communicate scientific information (e.g., about phenomena and/or the process of development and the design and performance of a proposed process or system) in multiple formats (including orally, graphically, textually, and mathematically). Planning and Carrying Out Investigations. Plan and conduct an investigation individually. 	• Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.
o Note-taking	investigation individually	
• Photographs and/or videotape	and collaboratively to	

	 Sketches Search for evidence Collecting and packaging evidence Chain of custody Investigation Key Terms: evidence, expert witness, testimonial evidence, physical evidence, individual evidence, class evidence, deductive reasoning, inductive reasoning	produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly.	
NJSLS-S: HS-LS1-1 Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins which carry out the essential functions of life through systems of	 Recovering Fingerprints & Death Investigation Anthropometry/Bertillon Method was a way investigators kept track of criminals. This method was based on measurements of various parts. Powder is used to visualize latent prints, which can then be lifted using clear sticky tape. Chemical methods for developing latent prints by reacting with the residue left by the finger to create a visible mark. Forensic pathologists associated with the medical examiner's or coroner's office are responsible for determining the cause of an undetermined or unexpected death. The manner in which death occurred is classified in death certifications as one of five categories: homicide, suicide, accidental, natural, or undetermined. 	 SKILLS: Use physical and chemical methods to develop latent fingerprints Practice safety in the science laboratory PRACTICES: Analyzing and Interpreting Data Apply concepts of statistics and probability (including determining function fits to data, slope, intercept, and correlation coefficient for linear fits) to scientific and engineering questions and problems, using digital tools when feasible. Planning and Carrying Out Investigations. 	 Patterns Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena. Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.

specialized cells.	 Forensic anthropology is concerned primarily with the identification and examination of human skeletal remains. The gender of the decedent can be determined by the size and shape of various skeletal features, especially those in the pelvis and skull, or cranium. The height of the victim when alive can be estimated by measuring the long bones of the skeleton, especially those in the lower limbs. <u>Key Terms:</u> anthropometry, Bertillon method, latent print, plastic print, visible print, homicide, rigor mortis, algor mortis, livor mortis 	 Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly. 	
NJSLS-S: HS-LS1-1 Construct an explanation based on evidence for how the structure of DNA determines the structure of	 Comparing Fingerprints All fingerprints fit three basic patterns. Loop patterns feature a ridge that makes a "U" shape. Whorl patterns feature a spiral shaped ridge. Arch patterns feature a ridge that goes across the finger. Probability is used to determine the likelihood that a fingerprint belongs to a certain individual by comparing to population statistics. 	 SKILLS: Use an equation to calculate probability Using a key, identify individual ridge characteristics in an inked print PRACTICES: Analyzing and Interpreting Data. Apply concepts of statistics and probability (including determining function fits to data, slope, intercept, and 	 Patterns Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena. Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims

proteins which	 Individual ridge characteristics are compared 	correlation coefficient for	about specific causes and
carry out the	between evidence and suspect.	linear fits) to scientific and	effects.
essential		engineering questions and	
functions of	Key Terms:	problems, using digital tools	
life through	loop pattern, whorl pattern, arch pattern, Henry	when feasible.	
systems of	Classification System, minutiae, AFIS	Constructing Explanations and	
specialized		Designing Solutions	
cells.		• Construct an explanation	
		based on valid and reliable	
		evidence obtained from a	
		variety of sources (including	
		students' own investigations,	
		models, theories,	
		simulations, peer review) and	
		the assumption that theories	
		and laws that describe the	
		natural world operate today	
		as they did in the past and	
		will continue to do so in the	
		future.	

Introduction to Forensics and Fingerprinting Unit

TIME FRAME	ΤΟΡΙϹ	PERFORMANCE TASKS ACTIVITIES/PROJECTS ASSESSMENTS	RESOURCES/INTERDISCIPLINARY CONNECTIONS
September	Forensic Science Intro	Case study 1.1: Strong Whiskey, TEp27 Class discussion: What is evidence? Independent Project: Research local and state crime labs, TEp5 Observational Skills Activity, <i>The Forensic Teacher</i> Activity: Eyewitness account of classroom "intruder", TEp34 Case Study 2.2: Ronald Cotton, TEp38 Activity 2.1: Probability and Class Evidence, TEp43 Activity 2.2: Can This Evidence be Individualized?, TEp46 Debate: Public information on registered sex offenders, TEp52 Case study 3.1: Jeffrey MacDonald, TEp63 Activity 3.1: Evaluating a Crime Scene, TEp65 Forensic Science Careers Presentation Ongoing: Case Studies - 3 per marking period reflecting an infamous case on a covered topic	Video: Nat. Geo. Crime Scene Evidence Ronald Cotton Crime Scenes 1 Crime Scenes 2 Crime Scenes 3 Teacher Resource CD
September	Recovering Fingerprints & Death Investigation	Laboratory Activity 4.1: Observing and Taking Fingerprints, TEp77 Laboratory Activity 4.2: Developing Latent Fingerprints, TEp88 Assessment: Quiz	Anthropometry - Measureable You! Video: Real CSI Latent Prints Fingerprint cards, Ward's Natural Science Fingerprint ink set, Ward's Natural Science Latent Fingerprint Kit, Sargent Welch Fingerprint Recognition - FBI Fingerprints & Other Biometrics Recording Legible Fingerprints

			Time of Death lab Missing Persons CaseExperiment 30 - Forensic Anthropology 2: Examination of Grave Site Bones, Forensic Science Laboratory Manual and Workbook, 3rd Ed., Kubic & Petraco, CRC Press
October	Comparing Fingerprints	 Activity: Calculating Henry-FBI classification, TEp81 Activity: Identifying fingerprint minutiae, TEp85 Activity: Back to the Crime Scene, TEp87 Additional Projects #6, TEp102 Quiz: Fingerprints and Types of Evidence 	Interactive Fingerprint Analysis Activity Fingerprint types slides set, <u>Ward's Natural Science</u> Fingerprint identification chart, <u>Sargent Welch</u> Teacher Resource CD

Analysis of Hair, Fiber, and Trace Evidence Unit

scenes. C statistical ✓ Hair can ✓ Fibers ca properties	ctures can reveal information related to the force and direction of	 ESSENTIAL QUESTIONS ✓ Can class evidence alone identify a criminal? What other types of evidence may be helpful? ✓ What information can hair provide? ✓ How are fibers used to link suspects to the crime scene or to victims? ✓ How can glass fragments and fractures be used in reconstructing a crime? 	
STANDARDS KNOWLEDGE Students will know:		SKILLS & PRACTICES Students will be able to:	CROSSCUTTING CONCEPTS: Students we be able to apply:

NJSLS-S			
Focus on Practices and Crosscutting Concepts	 Trace Evidence Trace evidence is any physical evidence that is too small to make physical matches but large enough to be analyzed. Some examples include powders, metals, paint and lipstick. The use of qualitative analysis can be used to identify unknown powders Explain how density and refractive index of glass is measured and utilized for forensic characterization. The flotation method is used to determine a glass fragment's density. 	 SKILLS: Perform tests to identify chemicals Practice safety in the science laboratory Analyze trace evidence from case studies and devise a plan to examine it in order to solve a crime PRACTICES: Analyzing and Interpreting Data. Apply concepts of statistics and probability (including determining function fits to data, slope, intercept, and correlation coefficient for linear fits) to scientific and engineering questions and problems, using digital tools when feasible. Constructing Explanations and Designing Solutions Construct an explanation based on 	 Patterns Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena. Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.
	13		

		valid and reliable evidence obtained from a variety of sources (including students' own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.	
NJSLS-S: HS-LS1-1 Construct an explanation based on evidence for how the structure of DNA determines the structure of	 Hair Analysis Hair is one type of class evidence. Based on the Locard Exchange Principle, hair (and other materials) can be directly transferred to other materials. Hair can differ among individuals and animals based on texture, color and cuticle scale patterns. Drugs and other chemicals can be deposited into hair through the blood system. 	 SKILLS: Use a compound microscope Record observations Make conclusions that will help to further students' investigations Create arguments in support of or opposition to the use of specific forensic procedures and types of evidence PRACTICES: 	Patterns • Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena. Cause and Effect • Empirical evidence is required to differentiate

proteins which carry out the essential functions of life through systems of specialized cells.	Locard Exchange Principle, polymers, cuticle, cortex, medulla, exemplar, false positive	 Constructing Explanations and Designing Solutions Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students' own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past 	between cause and correlation and make claims about specific causes and effects. Structure and Function • Investigating or designing new systems or structures requires a detailed examination of the properties of different materials, the structures of different components, and connections of components to reveal its function and/or solve a problem.
		 and will continue to do so in the future. Engaging in Argument from Evidence Make and defend a claim based on evidence about the natural world that reflects scientific knowledge, and 	

		student-generated evidence.	
NJSLS-S HS-LS1-1 Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins which carry out the essential functions of life through systems of specialized cells.	 Fibers Fibers can be identified using microscopes and by observing their chemical properties. They are examples of trace and class evidence since fibers offer no individuality. The ability of fibers to transfer to other materials allows it to be used as trace evidence. There are two types of fibers: natural and synthetic Certain properties of fibers help investigators determine its origins: Burning Thermal decomposition Chemical composition Density Fluorescence Key Terms: probative value, fabric, polypeptide, plastics, density 	 SKILLS: Use a compound microscope Identify various substances Use fiber analysis data to support a claim Practice safety in the science laboratory Create arguments in support of or opposition to the use of specific forensic procedures and types of evidence PRACTICES: Planning and Carrying Out Investigations. Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and 	Patterns• Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena.Cause and Effect• Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.Structure and Function • Investigating or designing new systems or structures requires a detailed examination of the properties of different materials, the structures of
		accuracy of data needed to produce	different components, and connections of

	reliable	components to reveal its
	measurements and	function and/or solve a
	consider limitations	problem.
	on the precision of	
	the data (e.g., number	
	of trials, cost, risk,	
	time), and refine the	
	design accordingly.	
	 Constructing Explanations 	
	and Designing Solutions	
	• Construct an	
	explanation based on	
	valid and reliable	
	evidence obtained	
	from a variety of	
	sources (including	
	students' own	
	investigations,	
	models, theories,	
	simulations, peer	
	review) and the	
	assumption that	
	theories and laws that	
	describe the natural	
	world operate today	
	as they did in the past	
	and will continue to	
	do so in the future.	
	• Engaging in Argument from	
	Evidence	

	 Make and defend a claim based on evidence about the natural world that reflects scientific knowledge, and student-generated evidence.
--	---

UNIT 2: Analysis of Hair, Fiber, and Trace Evidence

TIME FRAME	ΤΟΡΙΟ	PERFORMANCE TASKS ACTIVITIES/PROJECTS ASSESSMENTS	RESOURCES/INTERDISCIPLINARY CONNECTIONS
October-November	Trace Evidence	 Activity 9.1: How Well Can You Identify Trace Evidence?, TEp232 Class Discussion: What is the importance of Trace Evidence? Laboratory Activity 9.3: Analysis of White Powders, TEp243 Laboratory Activity 9.4: The Case of the Purloined Pennies, TEp247 Case Study 9.2, TEp260 Ongoing: Case Studies - 3 per marking period reflecting an infamous case on a covered topic Glass Fragment Lab Handout 	Trace Evidence Slide Set, <u>Ward's Natural Science</u> Teacher Resource CD
November	Hair Analysis	Class Discussion: The Crime Scene, TEp106-108 Laboratory Activity 5.1: Observations of Hair, TEp108 Class Discussion: Collection of Hair and Hair Toxicology Additional Projects #3, 4 and 5, TEp124	Hair and Fiber Analysis Kit, <u>Ward's Natural Science</u> Wards Hair Types Kit, <u>Sargent Welch</u> <u>Microscope Image Gallery - Hair</u> Teacher Resource CD
November-December	Fibers	Class Discussion: Using Fibers as Evidence Activity 6.1: Collection and Observation, TEp129 Suggested Assignment: Collect samples of different areas of the home using tape. TEp129	Hair and Fiber Analysis Kit, <u>Ward's Natural Science</u> Wards Fiber Types Kit, <u>Sargent Welch</u> Trace Evidence Slide Set, <u>Ward's Natural Science</u> <u>Wayne Williams Case</u> <u>Microscope Image Gallery - Fibers</u> Teacher Resource CD

|--|

Blood Evidence and DNA Analysis Unit

	ENDURING UNDERSTANDINGS	FSSENTIAL OUF	STIONS
 Blood spatter shapes and patterns can be used to interpret and reconstruct what happened at the crime scene. Differences in DNA sequences can be analyzed with biotechnology to provide statistically significant matches to an individual, used to identify or clear a suspect. 		 ✓ What can blood spatter patterns tell an investigator about a crime? How can these patterns be used to reconstruct a crime? ✓ What information can DNA tell us about an individual? ✓ In what ways can investigators use DNA evidence in a cour of law? 	
STANDARDS	KNOWLEDGE Students will know:	SKILLS & PRACTICES Students will be able to:	CROSSCUTTING CONCEPTS: Students will be able to apply:
NJSLS-S: <u>HS-LS3-1</u> Ask questions to clarify relationships about the role of DNA and chromosomes in coding the instructions for characteristic traits passed from parents to offspring.	 Blood Evidence Serology is the study of blood. Red blood cells have antigens on their surface - A and B. There are four blood types : A, B, AB and O. Humans have antibodies against antigens not present in our bodies. Blood typing determines the blood type of an individual by exposing a sample of blood to antibodies. Agglutination occurs when those antibodies and antigens are combined. Blood-spatter evidence can be analyzed by calculating/observing various aspects. Forensic scientists use various methods to test for the presence of blood that includes the following tests: Kastle-Meyer Presumptive blood testing, luminol testing. 	 SKILLS: Gather and interpret measurements. Interpret graphs. Practice safety in the science laboratory. Follow experimental procedures. Record observations. PRACTICES: Planning and Carrying Out Investigations. 	Cause and Effect • Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. Structure and Function • Investigating or designing new systems or structures requires a detailed examination of the properties of different

	• Point of origin helps investigators to compare	0	Plan and conduct an	different components, and
HS-LS3-2	blood-spatter evidence with testimonial evidence of		investigation	connections of components
Make and	witnesses and victims. Inconsistencies between the two		individually and	to reveal its function and/or
defend a claim	can be determined. The PO is used to calculate the		collaboratively to	solve a problem.
based on	height about the floor level where the wound was		produce data to	1
evidence that	inflicted.		serve as the basis for	Patterns
inheritable			evidence, and in the	• Different patterns may be
genetic	Key Terms:		design: decide on	observed at each of the
variations may	satellites, spikes, point of origin, area of convergence, angle of		types, how much,	scales at which a system is
result from: (1)	impact		and accuracy of data	studied and can provide
new genetic			needed to produce	evidence for causality in
combinations			reliable	explanations of
through meiosis,			measurements and	phenomena.
(2) viable errors			consider limitations	-
occurring during			on the precision of	
replication,			the data (e.g.,	
and/or (3)			number of trials,	
mutations			cost, risk, time), and	
caused by			refine the design	
environmental			accordingly.	
factors.		 Analy 	zing and Interpreting	
		Data.		
<u>HS-LS3-3</u>		0	Apply concepts of	
Make and			statistics and	
defend a claim			probability	
based on			(including	
evidence that			determining function	
inheritable			fits to data, slope,	
genetic			intercept, and	
variations may			correlation	
result from:			coefficient for linear	

	i i	
(1) new genetic	fits) to scientific and	
combinations	engineering	
through meiosis,	questions and	
(2) viable errors	problems, using	
occurring during	digital tools when	
replication,	feasible.	
and/or (3)	Using Mathematics and	
mutations	Computational Thinking	
caused by	• Use mathematical	
environmental	representations of	
factors.	phenomena or	
	design solutions to	
	support claims.	
HS-PS2-1		
Analyze data to		
support the		
claim that		
Newton's second		
law of motion		
describes the		
mathematical		
relationship		
among the net		
force on a		
macroscopic		
object, its mass,		
and its		
acceleration.		
	1	

NJSLS-S:			
	What is DNA?	SKILLS:	Cause and Effect
HS-LS3-1		• Practice safety in the	• Empirical evidence is
Ask questions to	• DNA is found in the nuclei of living cells and is the	science laboratory	required to differentiate
clarify	genetic make-up of individuals.	Follow experimental	between cause and
relationships	• Genes are portions of DNA which code for a specific	procedures	correlation and make
about the role of	protein which determine a specific trait. DNA is	Record observations	claims about specific
DNA and	wound into a specific structure called chromosomes.		causes and effects.
chromosomes in		PRACTICES:	
coding the	Key Terms:	• Planning and Carrying Out	Structure and Function
instructions for	DNA, nucleus, genes, protein, chromosomes, CODIS	Investigations.	• Investigating or designing
characteristic		• Plan and conduct an	new systems or structures
traits passed		investigation	requires a detailed
from parents to		individually and	examination of the
offspring.		collaboratively to	properties of different
		produce data to	materials, the structures of
<u>HS-LS3-2</u>		serve as the basis for	different components, and
Make and		evidence, and in the	connections of components
defend a claim		design: decide on	to reveal its function and/or
based on		types, how much,	solve a problem.
evidence that		and accuracy of data	
inheritable		needed to produce	Patterns
genetic		reliable	• Different patterns may be
variations may		measurements and	observed at each of the
result from: (1)		consider limitations	scales at which a system is
new genetic		on the precision of	studied and can provide
combinations		the data (e.g.,	evidence for causality in
through meiosis,		number of trials,	explanations of
(2) viable errors		cost, risk, time), and	phenomena.
occurring during			

replication,	refine the design
and/or (3)	accordingly.
mutations	Analyzing and Interpreting
caused by	Data.
environmental	• Apply concepts of
factors.	statistics and
	probability
	(including
<u>HS-LS3-3</u>	determining function
Make and	fits to data, slope,
defend a claim	intercept, and
based on	correlation
evidence that	coefficient for linear
inheritable	fits) to scientific and
genetic	engineering
variations may	questions and
result from:	problems, using
(1) new genetic	digital tools when
combinations	feasible.
through meiosis,	
(2) viable errors	
occurring during	
replication,	
and/or (3)	
mutations	
caused by	
environmental	
factors.	

NJSLS-S: <u>HS-LS3-1</u>	DNA Analysis in Forensics	SKILLS: • Follow experimental	Cause and Effect • Empirical evidence is
Ask questions to	• DNA Fingerprinting is a method used by investigators.	procedures	required to differentiate
clarify	Pieces of DNA are cut using restriction enzymes and	Compare DNA fingerprint	between cause and
relationships about the role of	compared with known DNA of suspects.In cases where there is little DNA evidence at a crime	data to identify a criminalPractice safety in the	correlation and make
DNA and chromosomes in	• In cases where there is fittle DNA evidence at a crime scene, investigators can use the PCR technique to make more copies to work with.	• Fractice safety in the science laboratory	claims about specific causes and effects.
coding the	• The use of mitochondrial DNA can be used to identify	PRACTICES:	Structure and Function
instructions for	missing persons.	Analyzing and Interpreting	• Investigating or designing
characteristic		Data.	new systems or structures
traits passed	Key Terms:	• Apply concepts of	requires a detailed
from parents to	DNA fingerprinting, restriction enzymes, PCR, Mitochondrial	statistics and	examination of the
offspring.	DNA	probability	properties of different
		(including	materials, the structures of
<u>HS-LS3-2</u>		determining function	different components, and
Make and		fits to data, slope,	connections of components
defend a claim		intercept, and	to reveal its function and/or
based on		correlation	solve a problem.
evidence that		coefficient for linear	
inheritable		fits) to scientific and	Patterns
genetic		engineering	• Different patterns may be
variations may		questions and	observed at each of the
result from: (1)		problems, using	scales at which a system is
new genetic		digital tools when	studied and can provide
combinations		feasible.	evidence for causality in
through meiosis,			

(2) viable errors	Constructing Explanations	explanations of
occurring during	and Designing Solutions	phenomena.
replication,	• Construct an	
and/or (3)	explanation based on	
mutations	valid and reliable	
caused by	evidence obtained	
environmental	from a variety of	
factors.	sources (including	
	students' own	
	investigations,	
<u>HS-LS3-3</u>	models, theories,	
Make and	simulations, peer	
defend a claim	review) and the	
based on	assumption that	
evidence that	theories and laws	
inheritable	that describe the	
genetic	natural world	
variations may	operate today as they	
result from:	did in the past and	
(1) new genetic	will continue to do	
combinations	so in the future.	
through meiosis,		
(2) viable errors		
occurring during		
replication,		
and/or (3)		
mutations		
caused by		
environmental		
factors.		

Blood Evidence and DNA Analysis Unit

TIME FRAME	ΤΟΡΙϹ	PERFORMANCE TASKS ACTIVITIES/PROJECTS ASSESSMENTS	RESOURCES/INTERDISCIPLINARY CONNECTIONS
December-January	Blood Spatter Analysis	Class Discussion: Using Blood Spatter as Evidence Case Study 11.1: The Sam Sheppard Case, TEp317 Laboratory Activity 11.4: Blood Pattern Analysis, TEp322 ABO Blood Typing Lab Presumptive Blood Test Lab O.J. Simpson Case Study/Analysis Ongoing: Case Studies - 3 per marking period reflecting an infamous case on a covered topic Assessment: Quiz	Video: The Killer's Trail (NOVA) Introduction to Blood Spatter Analysis Kit, <u>Ward's Natural Science</u> <u>Bloodstain Pattern Analysis</u> ABO Blood Typing Lab Kit Presumptive Blood Test Lab Kit Trajectory Kit, <u>Ward's Natural Science</u> Teacher Resource CD
January - February	What is DNA?	Class Discussion: What does DNA say about us? Laboratory Activity 12.1: Extracting DNA from a Banana, TEp341 (modified to use cheek cells instead)	Inside DNA The Killer's Trail Teacher Resource CD
February	DNA Analysis in Forensics	Class Discussion: The Advances of DNA technologies Activity 12.1: Simulation of RFLP, TEp345 Activity 12.2: Statistical Sampling Lab, TEp352 Activity 12.3: Simulation of DNA Replication Using PCR, TEp355 Gel Electrophoresis Virtual Lab Recovering the Romanovs Virtual Lab/Module Project: Both Sides of the Issue; Establishment of a DNA Databank, TEp366 Assessment: Unit Test	The Case for Innocence Create a DNA FingerprintPCR Analysis Diagram Gel Electrophoresis Virtual Lab Recovering the Romanovs Teacher Resource CD

Toxicology Unit

 ENDURING UNDERSTANDINGS The concentration of a substance determines its toxicity. The same substance may be helpful or harmful to a person, depending on the dose. 		ESSENTIAL QUESTIONS ✓ What makes a substance poisonous?	
NJSLS-S:			
<u>HS-LS1-2</u>	Poisons and the History of Toxicology	• Read and interpret tables	Structure and Function
Develop and	• The dosage of a substance determines whether it is	• Practice safety in the science	 Investigating or
use a model to	poisonous and how poisonous it is.	laboratory	designing new systems
illustrate the	• Elements of toxicology:	• Use a case study to identify the	or structures requires a
hierarchical	• Chemical and physical form of a substance	connections between hair	detailed examination
organization of	• How it enters the body	analysis and toxicology	of the properties of
interacting	• Body weight and the physiological conditions of the		different materials, the
systems that	victim (age and sex)	PRACTICES:	structures of different
provide	• Time period of exposure	 Planning and Carrying Out 	components, and
specific	• Presence of other chemicals in the body or in the dose	Investigations.	connections of
functions	• The lethal dose (LD_{50}) is used to measure toxicity.	• Plan and conduct an	components to reveal
within		investigation	its function and/or
multicellular	Key Terms:	individually and	solve a problem.
organisms.	toxins, chronic exposure, acute toxicity, LD ₅₀	collaboratively to	
		produce data to serve	Stability and Change
<u>HS-PS2-6</u>		as the basis for	• Feedback (negative
Communicate		evidence, and in the	or positive) can
scientific and		design: decide on	stabilize or destabilize
technical		types, how much, and	a system.

information about why the molecular-level structure is important in	accuracy of data needed to produce reliable measurements and consider limitations on the	Cause and Effect • Empirical evidence is required to differentiate between
the functioning of designed materials.	precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly	cause and correlation and make claims about specific causes and effects.
	 Analyzing and Interpreting Data. Apply concepts of statistics and probability (including determining function fits to data, slope, intercept, and correlation coefficient for linear fits) to scientific and engineering questions and problems, using digital tools when 	Scale, Proportion, and Quantity • Algebraic thinking is used to examine scientific data and predict the effect of a change in one variable on another (e.g., linear growth vs. exponential growth).
	feasible. • Constructing Explanations and Designing Solutions • Construct an explanation based on valid and reliable evidence obtained from	

(including students' own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. Engaging in Argument from Evidence • Make and defend a claim based on evidence about the natural world that reflects scientific knowledge, and student-generated evidence. • Asking Questions and Defining Problems • Ask questions that	· · · · · ·	
 own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. Engaging in Argument from Evidence Make and defend a claim based on evidence about the natural world that reflects scientific knowledge, and student-generated evidence. Asking Questions and Defining Problems Ask questions that 		a variety of sources
models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. Engaging in Argument from Evidence Make and defend a claim based on evidence about the natural world that reflects scientific knowledge, and student-generated evidence. Asking Questions and Defining Problems Ask questions that		
simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. Engaging in Argument from Evidence • Make and defend a claim based on evidence about the natural world that reflects scientific knowledge, and student-generated evidence. • Asking Questions and Defining Problems • Ask questions that		
<pre>review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. Engaging in Argument from Evidence</pre>		
assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. • Engaging in Argument from Evidence • Make and defend a claim based on evidence about the natural world that reflects scientific knowledge, and student-generated evidence. • Asking Questions and Defining Problems • Ask questions that		
 theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. Engaging in Argument from Evidence Make and defend a claim based on evidence about the natural world that reflects scientific knowledge, and student-generated evidence. Asking Questions and Defining Problems Ask questions that 		
describe the natural world operate today as they did in the past and will continue to do so in the future. • Engaging in Argument from Evidence • Make and defend a claim based on evidence about the natural world that reflects scientific knowledge, and student-generated evidence. • Asking Questions and Defining Problems • Ask questions that		
 world operate today as they did in the past and will continue to do so in the future. Engaging in Argument from Evidence Make and defend a claim based on evidence about the natural world that reflects scientific knowledge, and student-generated evidence. Asking Questions and Defining Problems Ask questions that 		
 they did in the past and will continue to do so in the future. Engaging in Argument from Evidence Make and defend a claim based on evidence about the natural world that reflects scientific knowledge, and student-generated evidence. Asking Questions and Defining Problems Ask questions that 		
 will continue to do so in the future. Engaging in Argument from Evidence Make and defend a claim based on evidence about the natural world that reflects scientific knowledge, and student-generated evidence. Asking Questions and Defining Problems Ask questions that 		
 in the future. Engaging in Argument from Evidence Make and defend a claim based on evidence about the natural world that reflects scientific knowledge, and student-generated evidence. Asking Questions and Defining Problems Ask questions that 		
 Engaging in Argument from Evidence Make and defend a claim based on evidence about the natural world that reflects scientific knowledge, and student-generated evidence. Asking Questions and Defining Problems Ask questions that 		
Evidence • Make and defend a claim based on evidence about the natural world that reflects scientific knowledge, and student-generated evidence. • Asking Questions and Defining Problems • Ask questions that		
 Make and defend a Claim based on evidence about the natural world that reflects scientific knowledge, and student-generated evidence. Asking Questions and Defining Problems Ask questions that 		• Engaging in Argument from
 claim based on evidence about the natural world that reflects scientific knowledge, and student-generated evidence. Asking Questions and Defining Problems Ask questions that 		
 evidence about the natural world that reflects scientific knowledge, and student-generated evidence. Asking Questions and Defining Problems Ask questions that 		
 natural world that reflects scientific knowledge, and student-generated evidence. Asking Questions and Defining Problems Ask questions that 		
 reflects scientific knowledge, and student-generated evidence. Asking Questions and Defining Problems Ask questions that 		evidence about the
 knowledge, and student-generated evidence. Asking Questions and Defining Problems Ask questions that 		
 student-generated evidence. Asking Questions and Defining Problems Ask questions that 		reflects scientific
 evidence. Asking Questions and Defining Problems Ask questions that 		knowledge, and
 Asking Questions and Defining Problems Ask questions that 		student-generated
Defining Problems • Ask questions that		evidence.
• Ask questions that		Asking Questions and
• Ask questions that		Defining Problems
		 Ask questions that
		arise from examining
models or a theory to		models or a theory to
clarify relationships.		clarify relationships.

NJSLS-S:			
	Drugs and Crime	SKILLS:	Structure and
HS-LS1-2	6	• Perform tests to identify	Function
Develop and	• Drugs can affect the function and structure of living systems.	chemicals	 Investigating or
use a model to	• The use and purchase of controlled drugs can lead to	• Compare and contrast legal	designing new systems
illustrate the	increased violence, crime and health and social problems.	issues to support an opinion	or structures requires a
hierarchical	There are several categories of controlled drugs:	and defend an argument	detailed examination
organization of	o Hallucinogens	• Practice safety in the science	of the properties of
interacting	o Stimulants	laboratory	different materials, the
systems that	o Narcotics	• Summarize drug analysis	structures of different
provide	o Depressants	techniques using a case study	components, and
specific	• Prescription and over-the-counter drugs		connections of
functions		PRACTICES:	components to reveal
within	Key Terms:	• Analyzing and Interpreting	its function and/or
multicellular	controlled drugs, hallucinogens, stimulants, narcotics, depressants	Data.	solve a problem.
organisms.		• Apply concepts of	
		statistics and	Stability and Change
		probability (including	• Feedback (negative
		determining function	or positive) can
		fits to data, slope,	stabilize or destabilize
<u>HS-PS2-6</u>		intercept, and	a system.
		correlation coefficient	~
		for linear fits) to	Cause and Effect
Communicate		scientific and	• Empirical evidence is
scientific and		engineering questions	required to
technical		and problems, using	differentiate between
information		digital tools when	cause and correlation
about why the molecular-level		feasible.	and make claims about
		• Obtaining, Evaluating, and	specific causes and effects.
structure is		Communicating Information	

important in the functioning of designed materials.		0	Communicate scientific information (e.g., about phenomena and/or the process of development and the design and performance of a proposed process or system) in multiple formats (including orally, graphically, textually, and mathematically).	Scale, Proportion, and Quantity • Algebraic thinking is used to examine scientific data and predict the effect of a change in one variable on another (e.g., linear growth vs. exponential growth).
--	--	---	---	--

Toxicology Unit

TIME FRAME	TOPIC	PERFORMANCE TASKS ACTIVITIES/PROJECTS ASSESSMENTS	RESOURCES/INTERDISCIPLINARY CONNECTIONS
March	Poisons and the History of Toxicology	Class Discussion: Dosage and Poisons Group research on a poison/toxin Additional Projects #2, TEp228 Assessment: Quiz	Discovery Streaming: Trace Evidence, Toxicology and DNA Introduction to Toxicology Lab Activity, Ward's Natural Science Teacher Resource CD
March - April	Drugs and Crime	Class Discussion: What is a Drug? Laboratory Activity 7.1: Spot Test Lab, TEp175 Laboratory Activity 7.2: Is It Ibuprofen?, TEp178 Urinalysis Lab, <i>The Forensic Teacher</i> Project: Both Sides of the Issue; Legalization of Drugs, TEp203 Responding to Alcohol Internet Activity Assessment: Unit Test	Drug Identification Chart, <u>Ward's Natural Science</u> "Y'Ur in the Game: Urinalysis Lab", <u>The Forensic</u> <u>Teacher</u> , Winter 2010 Teacher Resource CD <u>Responding to Alcohol Internet Activity</u>

Handwriting & Document Analysis Unit

ENDURING UNDERSTANDINGSESSENTIAL QUES✓ Documents can be authenticated using specific unique and identifiable handwriting characteristics as well as the types of ink and paper and other artifacts from the creation process.✓ What does a person's handwriting sa ✓ Can an investigator use handwriting ✓ Can handwriting samples identify a p ✓ Can handwriting samples identify a p ✓ How are electronic crimes processed ✓ How are electronic crimes processed ✓ Discuss the technique used to investigate unauthorized computer intrusion.		about them? mples in a court of law?	
STANDARDS	KNOWLEDGE Students will know:	SKILLS Students will be able to:	CROSSCUTTING CONCEPTS: Students will be able to apply:
NJSLS-S: Focus on Practices and Crosscutting Concepts	 Document Evidence and Handwriting Analysis Handwriting samples show unique characteristics known as class characteristics and individual characteristics that help investigators to use samples in a court of law. Handwriting experts examine twelve characteristics: Line quality Word and letter spacing Height, width and letter size ratios Pen lifts and separations 	 SKILLS: Use handwriting analysis data to identify patterns Collaborate with peers to perform an investigation PRACTICES: Analyzing and Interpreting Data. Apply concepts of statistics and probability (including determining 	Scale, Proportion, and Quantity • Algebraic thinking is used to examine scientific data and predict the effect of a change in one variable on another (e.g., linear growth vs. exponential growth). Patterns

 Connecting strokes Beginning and end strokes Unusual letter formation Shading or pen pressure Slant Baseline habits Flourishes or embellishments Placement of diacritics Computer forensics involves the preservation, acquisition, extraction, and interpretation of computer data. The central processing unit (CPU) is the brain of the computer—the main chip responsible for doing the actual computing. Random-access memory (RAM) is volatile memory that is lost when power is turned off. Programs are loaded into RAM because of its faster read speed. The hard disk drive (HDD) is typically the primary location of data storage within the computer. The types of computer evidence can be grouped under two major subheadings: visible and latent data. Mobile device forensic analysis can provide an overlay to physical evidence and timelines as well as computer forensic timelines to give a clearer picture of the events preceding and following a crime event. 	function fits to data, slope, intercept, and correlation coefficient for linear fits) to scientific and engineering questions and problems, using digital tools when feasible. • Engaging in Argument from Evidence • Make and defend a claim based on evidence about the natural world that reflects scientific knowledge, and student-generated evidence.	• Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena.
Key Terms: class characteristics, individual characteristics, exemplar, diacritics		

NJSLS-S: Focus on Practices and Crosscutting Concepts	 Forgery There are three types of forgery: blind, simulated and traced. Forgeries include erasures of words or letters which are evident by examining the paper's surface. This is known as obliteration and they can either be physical or chemical. Inks from suspected forgeries can be analyzed using 	 SKILLS: Design an experiment using the method of paper chromatography Draw conclusions based on experimental evidence Practice safety in the science laboratory 	Scale, Proportion, and Quantity • Algebraic thinking is used to examine scientific data and predict the effect of a change in one variable on another (e.g., linear growth vs. exponential growth).
	 the method of chromatography. Counterfeiting is one of the oldest crimes in the world and has been decreasing due to changes in the materials used to create our currency. <u>Key Terms:</u> forgery, blind forgery, simulated forgery, traced forgery, obliterate, chromatography, counterfeiting 	 PRACTICES: Planning and Carrying Out Investigations. Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly. Analyzing and Interpreting Data. 	Patterns • Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena.

	A nuly concents of
	• Apply concepts of
	statistics and probability
	(including determining
	function fits to data,
	slope, intercept, and
	correlation coefficient for
	linear fits) to scientific
	and engineering questions
	and problems, using
	digital tools when
	feasible.
	 Constructing Explanations and
	Designing Solutions
	• Construct an explanation
	based on valid and
	reliable evidence obtained
	from a variety of sources
	(including students' own
	investigations, models,
	theories, simulations, peer
	review) and the
	assumption that theories
	and laws that describe the
	natural world operate
	today as they did in the
	past and will continue to
	do so in the future.
L	

Handwriting Analysis Unit

TIME FRAME	ΤΟΡΙϹ	PERFORMANCE TASKS ACTIVITIES/PROJECTS ASSESSMENTS	RESOURCES/INTERDISCIPLINARY CONNECTIONS
April	Document Evidence and Handwriting Analysis	Activity 16.1: Analyze Your Own Handwriting, TEp481 Class Discussion: What does our handwriting say about us? Case Study 16.1: Anonymous Writing, TEp481 Personal Cell Phone Analysis Questions - see Criminalistics textbook from NJIT (Pearson)	Document Analysis Lab Activity, <u>Ward's</u> <u>Natural Science</u> Teacher Resource CD
April - May	Forgery	 Activity 16.2: Simulated Forgery, TEp484 Activity 16.3: Blind, Simulated and Traced Forgery, TEp486 Activity 16.6: Detecting Deliberately Disguised Handwriting, TEp490 Laboratory Activity 16.1: Finding Erasures, TEp493 Laboratory Activity 16.4: Ink Comparison Using Paper Chromatography, TEp499 Laboratory Activity 16.5: Know Your Money, TEp502 Laboratory Activity 16.6, Testing for Counterfeit Currency, TEp503 Additional Projects #1, TEp511 Assessment: Unit Test 	Ink Chromatography Activity, <u>Ward's Natural</u> <u>Science</u> Teacher Resource CD

Ballistics and Impressions Unit

 ENDURING UNDERSTANDINGS ✓ Guns, tools, teeth, and other weapons leave unique microscopic impressions 		 ESSENTIAL QUESTIONS ✓ What evidence from a gun can be left behind at a crime scene? ✓ What characteristics would you look for to determine the kind of weapon used in a crime? 		
	that can be analyzed and matched to reconstruct a crime scenario.		potprints be used to reconstruct a crime scene?	
STANDARDS	KNOWLEDGE Students will know:		SKILLS Students will be able to:	CROSSCUTTING CONCEPTS: Students will be able to apply:
NJSLS-S: HS-PS2-3 Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision.	 Firearms There are several types of our society such as hand shotguns and BB guns. Bullets are identified by (diameter). The weight, shape and type of bullet class evidence. The lands and grooves n that are rifled are known characteristics and can b weapons. Key Terms: caliber, lands, grooves, cartridge 	guns, rifles, its caliber dimensions, are considered nade on bullets as class be used to identify	 SKILLS: Construct an argument based on evidence provided in a case study PRACTICES: Constructing Explanations and Designing Solutions Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students' own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the 	 Scale, Proportion, and Quantity Algebraic thinking is used to examine scientific data and predict the effect of a change in one variable on another (e.g., linear growth vs. exponential growth). Patterns Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena.

		 past and will continue to do so in the future. Engaging in Argument from Evidence Make and defend a claim based on evidence about the natural world that reflects scientific knowledge, and student-generated evidence. 	 Structure and Function Investigating or designing new systems or structures requires a detailed examination of the properties of different materials, the structures of different components, and connections of components to reveal its function and/or solve a problem. Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.
Focus on Practices and Crosscutting Concepts	 Toolmarks and Other Impressions Tools can be any object and is defined by the purpose for which the object is used. Toolmarks are created on a surface softer than the tool. Both class and individual characteristics can be used to identify a tool used in a crime. Toolmarks are taken into the lab for examination or cast replicas are created. 	 SKILLS: Participate in class discussions Collaborate with peers to draw conclusions Gather and use information to solve problems Make measurements and construct a graph to interpret data PRACTICES: Analyzing and Interpreting Data. 	Scale, Proportion, and Quantity • Algebraic thinking is used to examine scientific data and predict the effect of a change in one variable on another (e.g., linear growth vs. exponential growth). Patterns • Different patterns may be observed at each of the scales

Shoeprints/footprints can provide	• Apply concepts of statistics and	at which a system is studied
information about a crime scene such as	probability (including determining	and can provide evidence for
direction of approach and departure, point	function fits to data, slope,	causality in explanations of
of entry, exit and the sequence of events	intercept, and correlation	phenomena.
and personal traits.	coefficient for linear fits) to	
• Shoeprints can be matched to a shoe using	scientific and engineering	Structure and Function
class evidence.	questions and problems, using	 Investigating or designing
• Tire treads are similar to shoeprints in that	digital tools when feasible.	new systems or structures
they can provide both class and individual	• Obtaining, Evaluating, and	requires a detailed
characteristics used in identification.	Communicating Information	examination of the properties
	• Communicate scientific	of different materials, the
Key Terms:	information (e.g., about	structures of different
Casts	phenomena and/or the process of	components, and connections
	development and the design and	of components to reveal its
	performance of a proposed	function and/or solve a
	process or system) in multiple	problem.
	formats (including orally,	
	graphically, textually, and	Cause and Effect
	mathematically).	• Empirical evidence is
	 Using Mathematics and Computational 	required to differentiate
	Thinking	between cause and correlation
	• Use mathematical and/or	and make claims about
	computational representations of	specific causes and effects.
	phenomena or design solutions to	
	support explanations.	
	• Use mathematical representations	
	of phenomena or design solutions	
	to support and revise	
	explanations.	

	 Create or revise a simulation of a phenomenon, designed device, process, or system. 	
--	---	--

Ballistics and Impressions Unit

TIME FRAME	TOPIC	PERFORMANCE TASKS ACTIVITIES/PROJECTS ASSESSMENTS	RESOURCES/INTERDISCIPLINARY CONNECTIONS
May	Firearms	 Class Discussion: What evidence does a gunshot leave behind? Case Study 15.1: The Case of People v. Contreras, TEp454 Project: Both Sides of the Issue; Gun Control Laws, TEp474 	Trajectory Kit, <u>Ward's Natural Science</u> <u>Forensic Science Kits and Accessories</u> Teacher Resource CD
May-June	Toolmarks and Other Impressions	 Laboratory Activity 15.5: Matching Toolmarks, TEp458 Class Discussion: Where can shoeprints be used as evidence?, TEp460 Checkpoint Question #18, TEp473 Laboratory Activity 15.7: Relating Shoe Size to Height, TEp464 Analyzing Tire Tracks Activity, <i>The Forensic</i> <i>Teacher</i> Laboratory Activity 15.8: Comparing Bite Marks, TEp467 Laboratory Activity 15.9: The Case of the Bitten Bonbon, TEp468 Assessment: Unit Test 	Inkless Shoe/Footprint Kit, <u>Ward's Natural Science</u> <u>Forensic Files Mini-Episodes</u> "Making Tracks. Literally.", <u>The Forensic Teacher</u> , Spring 2010 Teacher Resource CD

Modifications

Teacher Note: Teachers identify the modifications that they will use in the unit.
 Restructure lesson using UDL principals (<u>http://www.cast.org/our-work/about-udl.html#.VXmoXcfD_UA</u>) Structure lessons around quantions that are authentic, relate to students' interests, social/family background and knowledge of their
• Structure lessons around questions that are authentic, relate to students' interests, social/family background and knowledge of their community.
• Provide students with multiple choices for how they can represent their understandings (e.g. multisensory techniques-auditory/visual aids; pictures, illustrations, graphs, charts, data tables, multimedia, modeling).
• Provide opportunities for students to connect with people of similar backgrounds (e.g. conversations via digital tool such as SKYPE, experts from the community helping with a project, journal articles, and biographies).
• Provide multiple grouping opportunities for students to share their ideas and to encourage work among various backgrounds and cultures (e.g. multiple representation and multimodal experiences).
• Engage students with a variety of Science and Engineering practices to provide students with multiple entry points and multiple ways to demonstrate their understandings.
• Use project-based science learning to connect science with observable phenomena.
• Structure the learning around explaining or solving a social or community-based issue.
• Provide ELL students with multiple literacy strategies.
 Collaborate with after-school programs or clubs to extend learning opportunities

NGSS Resources

Appendix F Science & Engineering Practices Appendix G Crosscutting Concepts